
NASA Employee Repository Design 
Document Notes

Lee Saxton - Blue
Celine Teh - Purple
Kwan Lee - Orange

Tutor’s Skype: cathryn.peoples
Domain

• NASA employee repo
• Local database, who can access (on-ground control)
• Meeting Minutes 3, 4 (pre), 5 (with tutor), 6 (post)

System requirements
• OS – Linux Ubuntu-Kernel (Morales, 2022)

• README – setup instructions and how to execute
• Windows OS

• README – setup instructions and how to execute
• Private APIs for interdepartmental sharing (Brooks, 2013)
• Database - MariaDB? (open-source updated counterpart to MySQL) – NO (Ankush, 2022)

• Do we want a UI for this project? No, not for this project.
• SQL is the winner!

• Logging libraries (Solarwinds, 2022)
• https://coralogix.com/blog/python-logging-best-practices-tips/

Assumptions
• Data download requirements – 8GB RAM, 2MB per min
• CPU – quadcores
• API - SOAP
• Latest Windows/Linux OS distribution (compatibility)
• Monolithic prototype
• Above are mostly resources, need to hash out assumptions
• Context/story/situation, who are using the system, what data being accessed, security 

measures/concerns
• E.g. Astronauts on the moon accessing rover data from a local database on the 

ground staff
• Monitor vitals, temperature etc



• Don’t focus too much on functional requirements, prioritise non-functional 
requirements (specifically security)

• Demo the high priorities (security)

Limitations
• Request/reply is limited to local ping
• Open-source programs only
• Limited CPU/storage for prototype
• Command line based – No GUI/UI

Security Frameworks
• Error Messages

• Customized for minimal info disclosure
• 200
• 300
• 400
• 500

____________________________________________________________________________
• Access controls (Negus, 2020)

• Interdepartmental Groups
• NASA employee - no privs

• SpaceStation - no privs
• SSAdmin - read 

• HR/AdminDept - read
• HREmployees - read, write

• IT - read? Or just execute?
• ITAdmin - execute

• Employee
• NASA Employee

• Astronaut/Pilot
• Researcher/Engineer 
• Medic
• Accountant/Marketing
• HR/IT/Admin

____________________________________________________________________________
• Group NASA – read

• Admin – read, write, execute
• NASA HR – read, write
• NASA Admin OTHER – read
• Other – no privileges

• Group OtherAgency – read



• All other relevant government department admins would be added
• Other - No privileges

________________________________________________________________________
____

Local scope
• Session Management (Pinto & Stuttard, 2013)

• Cookies – with encryption
• Inactivity – automatic logout

• Authentication Management (Pinto & Stuttard, 2013)
• 2FA – saved credentials
• Login timeout – automatic reset with saved credentials (only if we have time) 

• Input restrictions (Pinto & Stuttard, 2013)
• Only allow certain charsets for certain input fields

• Boundary validation (Pinto & Stuttard, 2013)
• Validation checks/input sanitation at every processing layer looking for specified 

attacks at each layer
• Server-side
• Multi-step validation and canonicalization?

• Can avoid tricks like <scr<script>ipt>

Tools
• Source code parsing (Li, 2021)

• Python code parsing for weaknesses and errors
• Code testing

• Unit testing - each function/method/feature
• Integration/end-to-end testing

Libraries
• Python programming language
• pylint, pytest, pandas, logging, sqlite3
• Windows, Linux
• Input sanitisation (user input field validation): SQL, XML, HTML, encoded characters
• Source code parsing
• Security threats: SQL injection, XSS, XML, unauthorised privileged access (IAM boundary),

buffer overflow, cookie tampering, info leak via logs
• MoSCoW

• Must have: login
• Should have: check input
• C and W: in appendix

• Add: Encryption, data storage, regex
• Prioritise discussions on security



• Object-oriented
• DB: row-based access control
• STRIDE, OWASP to structure vulns and mitigations

Jamboard
Brainstorm Visualisation (SQL and access control brainstorm)

UML Diagrams
o   Create Sequence Diagram (database attack, e.g. injection)

• CISCO

A database attack sequence typically includes the following steps:

• Reconnaissance: The attacker gathers information about the database, such as the 
type of database, the operating system it is running on, and the network architecture.
This information can be obtained through port scanning, network sniffing, social 
engineering and other methods.

• Vulnerability scanning: Attackers scan databases for vulnerabilities such as weak 
passwords, unpatched software, and misconfigured settings. This can be done using
automated tools that scan databases for known vulnerabilities.

https://jamboard.google.com/d/1X3TleisHjirVTVJHy7DdGoUQRKa7N7zgkQCZZ98jZhs/edit?usp=sharing


• Exploitation: Once a vulnerability is discovered, the attacker uses various 
techniques to exploit the vulnerability and gain access to the database. This could 
include SQL injection attacks, buffer overflow attacks, or privilege escalation attacks.

• Privilege Escalation: Once access to the database is gained, the attacker tries to gain
higher privileges, such as administrative privileges, to control the database and 
access sensitive data. login information.

• Data breaches: Once attackers gain access to databases and sensitive data, they 
may attempt to exfiltrate the data for later use or sale. This may involve copying the 
data to a remote server or using other techniques such as steganography to hide the
data in other files.

• Cover tracks: To avoid detection, attackers may attempt to cover their tracks by 
deleting logs, modifying system files, or using other techniques to hide their 
presence on the system.

 

OWASP Framework
The OWASP framework is based on the principle that security should be built into web 
applications from the ground up, rather than being added as an afterthought. It provides a 
comprehensive set of guidelines and best practices for each stage of the software 
development life cycle, from requirements gathering to deployment.

The OWASP framework includes a list of the top 10 web application security risks, which 
covers the most common vulnerabilities that can be exploited by attackers. These risks 
include injection flaws, broken authentication and session management, cross-site 
scripting (XSS), and insecure cryptographic storage. By addressing these risks, developers 
can greatly improve the security of their web applications.

The OWASP framework also includes a number of tools and resources that can be used to 
test and assess the security of web applications. These tools include the OWASP ZAP (Zed 
Attack Proxy), which is a popular open-source web application security scanner, and the 
OWASP Top Ten Proactive Controls, which provide guidance on how to proactively address 
the top 10 web application security risks.
 

o   potential mitigation + background info

 

SQL injection attacks are a type of cyber-attack that target databases by exploiting 
vulnerabilities in web applications that interact with them. The goal of these attacks is to 
manipulate the SQL statements that are used to communicate with the database, allowing 
attackers to gain access to sensitive data, modify data, or even take control of the database 
server.



SQL injection attacks work by inserting malicious SQL code into a web application's input 
fields, such as search boxes or login forms. This code can be used to modify the SQL 
statements that are sent to the database, allowing attackers to bypass authentication 
mechanisms, steal data, or execute unauthorised commands.

For example, an attacker could use SQL injection to bypass a login form and gain access to
an application's administrative console. They could then modify data or insert new data into
the database, potentially causing damage or stealing sensitive information.

SQL injection attacks can be prevented by implementing strong security measures, such as
input validation and parameterized queries. Input validation involves verifying that the data 
entered into input fields is of the correct type and format, and does not contain malicious 
code. Parameterized queries involve separating the SQL code from the user input, ensuring 
that input data is not interpreted as SQL code.

Regular security testing and vulnerability scanning can also help identify and prevent SQL 
injection attacks. By being aware of the risks and taking appropriate security measures, 
organisations can protect their databases and prevent potentially devastating data 
breaches.
 

o    

§  List of attacks on database

1.         SQL injection attack: This type of attack is to inject malicious SQL code into the 
input field of the web application to manipulate the database and steal sensitive data

2.         Denial of service (DoS) attack: This type of attack works by flooding the database 
server with traffic in order to overwhelm its resources and interfere with its operation.

3.         Password attack: This attack method uses brute force or dictionary attack to crack 
weak passwords and gain access to the database.

4.         Malware attack: This attack consists of installing malware on the database server to 
steal data, modify data, or disrupt database operations.

A potential design for a NASA employee repository might include the following 
components:



User Interface: The repository needed an intuitive and user-friendly interface that would 
allow authorised users to access and manage employee information. The user interface will 
be designed to be responsive and mobile-friendly, allowing users to access the repository 
from any device.

Authentication and authorization: The repository will be secured with user authentication 
and authorization mechanisms to ensure that only authorised users can access and 
manage employee information. This will include multi-factor authentication, password 
policies and user rights management.

Employee Profile: Each employee will have a profile including their personal information, 
title, department, contact information and other relevant details. These profiles can be 
searched and sorted by name, department, title, and other criteria.

Document management: The repository will allow users to upload and manage employee-
related documents such as resumes, performance reviews, and disciplinary records. These 
documents can be searched and sorted by type, date and other criteria.

Reporting and analytics: The repository will include reporting and analytics capabilities that
allow managers and administrators to generate reports on employee data such as 
headcount, turnover rates, and performance metrics. These reports can be customized and 
exported in a variety of formats.

Integration with HR systems: The repository will be integrated with other HR systems, such 
as payroll and benefits management software, to ensure employee data is accurate and up-
to-date. This will require a robust API and data synchronisation mechanism.

Data Privacy and Security: The repository will comply with all relevant data privacy and 
security regulations, such as GDPR and HIPAA, and will include data backup and disaster 
recovery mechanisms to ensure data integrity and availability.

Overall, the design needed to balance usability, security, and compliance requirements to 
ensure NASA employees and administrators could easily access and manage employee 
information while protecting sensitive data.



Activity diagram (first draft – still need to add the boundary layer and get rid of the yes/no’s)



Activity diagram (second draft)



Feedback: This is more of a process/flow diagram (include reference), note that this is not UML-
recognised. Activity diagram is somewhat the equivalent in UML. System startup, data entry, clean 
code. 

Activity Diagram (Third draft)





Repository Use Case (first draft)





Use case (Second Draft)



Class Diagram



First draft

Second draft



Third draft



References

Morales. (2022) https://lemp.io/the-importance-of-operating-systems-for-nasa-computers/
Ankush (2022) https://geekflare.com/open-source-database/
Brooks, G. (2013) https://digital.gov/2013/04/30/apis-in-government/
Negus, C. (2020) Linux Bible: Wiley.
Solarwinds (2022) https://www.loggly.com/ultimate-guide/python-logging-libraries-frameworks/
Pinto & Stuttard (2013) The Web Application Hacker’s Handbook: Wiley.
Mozilla (2023) https://developer.mozilla.org/en-US/docs/Web/API/HTML_Sanitizer_API
Li, V (2021) Bug Bounty Bootcamp: No Starch Press.
https://www.cyberdegrees.org/resources/security-clearances/

https://digital.gov/2013/04/30/apis-in-government/

