
L. M. Saxton SSD_2023

Developing an API for a Distributed Environment
In this session, you will create a RESTful API which can be used to create and delete user records.
Responses to the questions should be recorded in your e-portfolio.

You are advised to use these techniques to create an API for your team’s submission in Unit 6.
Remember that you can arrange a session with the tutor during office hours for more support, if
required.

Using the Jupyter Notebook workspace, create a file named api.py and copy the following code
into it (a copy is provided for upload to Codio/GitHub): You can install Jupyter Notebook on your
local machine following these instructions or via the University of Essex Software Hub.

#source of code: https://codeburst.io/this-is-how-easy-it-is-to-create-a-rest-api-8a25122ab1f3

from flask import Flask
from flask_restful import Api, Resource, reqparse

app = Flask(__name__)
api = Api(app)

users = [
 {
 "name": "James",
 "age": 30,
 "occupation": "Network Engineer"
 },
 {
 "name": "Ann",
 "age": 32,
 "occupation": "Doctor"
 },
 {
 "name": "Jason",
 "age": 22,
 "occupation": "Web Developer"
 }
]

class User(Resource):
 def get(self, name):
 for user in users:
 if(name == user["name"]):
 return user, 200
 return "User not found", 404

 def post(self, name):
 parser = reqparse.RequestParser()
 parser.add_argument("age")
 parser.add_argument("occupation")
 args = parser.parse_args()

 for user in users:
 if(name == user["name"]):

https://www.my-course.co.uk/course/view.php?id=9731§ion=6
https://codeburst.io/this-is-how-easy-it-is-to-create-a-rest-api-8a25122ab1f3
https://software.essex.ac.uk/
https://realpython.com/jupyter-notebook-introduction/
https://realpython.com/jupyter-notebook-introduction/

L. M. Saxton SSD_2023

 return "User with name {} already exists".format(name), 400

 user = {
 "name": name,
 "age": args["age"],
 "occupation": args["occupation"]
 }
 users.append(user)
 return user, 201

 def put(self, name):
 parser = reqparse.RequestParser()
 parser.add_argument("age")
 parser.add_argument("occupation")
 args = parser.parse_args()

 for user in users:
 if(name == user["name"]):
 user["age"] = args["age"]
 user["occupation"] = args["occupation"]
 return user, 200

 user = {
 "name": name,
 "age": args["age"],
 "occupation": args["occupation"]
 }
 users.append(user)
 return user, 201

 def delete(self, name):
 global users
 users = [user for user in users if user["name"] != name]
 return "{} is deleted.".format(name), 200

api.add_resource(User, "/user/")

app.run(debug=True)

Question 1

Run the API.py code. Take a screenshot of the terminal output. What command did you use to run
the code?

I used python3 restapi.py to run the code on my own env as flask was unsupported on the
codio workbook.

L. M. Saxton SSD_2023

Question 2

Run the following command at the terminal prompt: w3m http://127.0.0.1:5000/user/Ann

What happens when this command is run, and why?

I was unable to get a 200 – OK response from the code provided. I used Insomnia as a API tester
and it reported that the server was not responding.

Question 3

Run the following command at the terminal prompt: w3m http://127.0.0.1:5000/user/Adam

What happens when this command is run, and why?

Here the code is technically correct – there is no ‘Adam’ in the user list so the output should return
a 404 – NOT FOUND. But, as is documented, all users were 404, and the same message concerning
the server popped up again on Insomnia.

http://127.0.0.1:5000/user/Adam
http://127.0.0.1:5000/user/Ann

L. M. Saxton SSD_2023

Using pylint I tried to clean up the code to see if that would improve the output, and did so up to
the level that functionality would allow:

But I still received the same errors as before, even though the code matched the website’s
description.

Question 4

What capability is achieved by the flask library?

L. M. Saxton SSD_2023

Clearly Flask allows the creation, updating, and deletion of users and user categories on an
application.

It may have run into errors because it did not have a complementary json file.

Though the logic of the code is clear, I could not make it work – which may mean that my coding
chops are not up to snuff.

And unfortunately, since this is a compressed module, I did not have the time I would have liked to
dedicate to figure it out. So for the final project, another API might need to be used.

	Developing an API for a Distributed Environment
	Question 1
	Question 2
	Question 3
	Question 4

