
L. M. Saxton SSD_2023

Codio Activity - Buffer Overflow
Part I

In this example, you will compile and run a program in C using the Codio workspace provided
(Buffer Overflow in C). The program is already provided as bufoverflow.c - a simple program that
creates a buffer and then asks you for a name, and prints it back out to the screen.

Run the code a second time (from the command window this can be achieved by entering
./bufoverflow on the command line). This time, enter a string of 10 or more characters.

• What happens?
• What does the output message mean?

__

The following code was contained in bufoverflow.c:
include <studio.h>

int main (int argc, char **argv)
{
char buf[8];
printf(“Enter name: “)
gets(buf);
printf(“%s\n”, buf);
return 0;
}

When performing the above, the following code execution was observed in Figure 1:

Figure 1: Buffer Overflow in C

L. M. Saxton SSD_2023

In the first instance, the name entered is within the buffer range so the input is reflected back as
output.

In the second instance, the name entered exceeds the buffer range and thus results in the
following message:

*** stack smashing detected ***; <unknown> terminated

Aborted (core dumped)

The message is comprised of two main components:

1. “stack smashing detected” (Narang, 2022)

◦ defense mechanism to prevent a possible buffer overflow

◦ uses a sequence of bits to check for a buffer overflow

◦ is a runtime error and results in program termination (<unknown> terminated>

2. Aborted (core dumped) (knobs-dials, n.d.)

◦ intentional program termination during debugging

▪ performed to better figure out what went wrong

▪ prevents further data corruption through abrupt termination

__

Part II

Now carry out a comparison of this code with one in Python (Buffer Overflow in Python), following
these instructions:

In the Codio workspace, you will be using the file called Overflow.py:

Run your code using: Python overflow.py (or use the codio rocket icon)

What is the result?

Read about Pylint at http://pylint.pycqa.org/en/latest/tutorial.html

Install pylint using the following commands:

pip install pylint (in the command shell/ interpreter)

Run pylint on one of your files and evaluate the output:

• Pylint your_file
• (Make sure you are in the directory where your file is located before running Pylint)

What is the result? Does this tell you how to fix the error above?

__

http://pylint.pycqa.org/en/latest/tutorial.html

L. M. Saxton SSD_2023

Part 2 was performed on the command line of a Kali Linux VM. The code was written on VIM and
can be reviewed in Figure 2.

When performing the above, the following code execution was observed:

Pylint was then downloaded to parse the code for possible errors (Figure 3), the results of which
can be seen in Figure 4.

Figure 2: Python Script for Buffer Overflow

Figure 3: Python Code Execution

Figure 4: Download of Pylint

L. M. Saxton SSD_2023

Conclusions about the code output and errors are as follows:

1. ‘Index Error: list assignment index out of range’ (Gallagher, 2020)

1. occurs when trying to access a variable outside the range of a list

2. ‘Missing module docstring (missing-module-docstring) (Alonso, 2022)

1. occurs when a description of the module doc-string is missing

1. example: ‘‘‘Enter doc-string here’’’

The errors shown above would result in a code error and thus leave the program vulnerable to a
buffer overflow attack. As the index has not been set properly and module doc-string is absent, the
module would not run upon execution and this piece of security would not be implemented.

Figure 5: Pylint Results

	Codio Activity - Buffer Overflow
	Part I
	Part II

