
Codio Activity: The Producer-Consumer
Mechanism (Unit 5)
Producer/Consumer Problem (also known as the ‘bounded buffer’ problem):

A ‘producer’ is producing items at a particular (unknown and sometimes unpredictable)
rate.

A ‘consumer’ is consuming the items – again, at some rate.

For example, a producer-consumer scenario models an application producing a listing that must
be consumed by a printer process, as well as a keyboard handler producing a line of data that
will be consumed by an application program. This is shown in the picture below (Shene, 2014).

Items are placed in a buffer when produced, so:

Consumer should wait if there isn’t an item to consume

Producer shouldn’t ‘overwrite’ an item in the buffer

A picture showing a diagram of the Producer-Consumer Mechanism.

Synchronisation is necessary because:

If the consumer has not taken out the current value in the buffer, then the producer should
not replace it with another.

Similarly, the consumer should not consume the same value twice.

Task
Run producer-consumer.py in the provided Codio workspace (Producer-Consumer
Mechanism), where the queue data structure is used.

A copy of the code is available here for you.

code source: https://techmonger.github.io/55/producer-consumer-python/

Code Output

from threading import Thread

from queue import Queue

q = Queue()

final_results = []

def producer():

 for i in range(100):

 q.put(i)

def consumer():

 while True:

 number = q.get()

 result = (number, number**2)

 final_results.append(result)

 q.task_done()

for i in range(5):

 t = Thread(target=consumer)

 t.daemon = True

 t.start()

producer()

q.join()

print (final_results)

It should be noted that, upon further investigation (Berenson et al., 2015), the possible
increased processing speed derived from a thread range of 5 was found to have a slight
disadvantage when compared to a thread range of 1 within an i range of 100. Within an i range
of 10000, a thread range of 5 was found to have a significant disadvantage in terms of
processing time when compared to a thread range of 1. While this may be useful for a light
program such as this, a scaled program may need additional parameters to not significantly
slow the processing time.

Answer the following questions:

1. How is the queue data structure used to achieve the purpose of the code?
Queue follows the FICO rule: First In First Out. This rule means oldest item is removed first
in a queue lineup. It is used to implement first in, first served (GeeksforGeeks, n.d)

2. What is the purpose of q.put(x)?
Puts an item into the queue. If the queue is full, the next item must wait to be added.
(GeeksforGeeks, n.d)

3. What is achieved by q.get()?
Removes and returns an item from the queue. Timeout and block arguments can rate limit
the speed of the command (Python, 2023a)

4. What functionality is provided by q.join()?
Blocks until all items have been added and processed (Python, 2023a)

5. Extend this producer-consumer code to make the producer-consumer scenario available in
a secure way. What technique(s) would be appropriate to apply?

Added: SSL wrapper for prep of setting up socket connection for client and producer
(Python, 2023b).

References
GeeksforGeeks (n.d.) Queue in Python. geeksforgeeks.org [Available Online]
https://www.geeksforgeeks.org/queue-in-python/

Python (2023a) queue - A synchronized queue class | Python. python.org [Available Online]
https://docs.python.org/3/library/queue.html

Python (2023b) ssl - TSL/SSL wrapper for socket objects | Python. python.org [Available
Online] https://docs.python.org/3/library/ssl.html#ssl-security

https://www.geeksforgeeks.org/queue-in-python/
https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/ssl.html#ssl-security

