SRM_2022 L. M. Saxton

Risk Modelling Activities

1. Visit the ‘Introduction to Monte Carlo Simulation in Excel’ page by Winston (see the
reading list) and work through the exercises provided.
2. Visit Allen Downey’s Think Bayes 2 pages (See the reading list).

Download the notebooks.zip file and then try the following exercises (note these can be run
in Codio using the Jupyter Notebook, or via your download from the University of Essex
Software Hub) Complete the exercises labelled chapter 1 and chapter 2.

https://www.essex.ac.uk/student/it-services/software-hub
https://www.essex.ac.uk/student/it-services/software-hub

SRM_2022 L. M. Saxton

2. Bayes’ Theorem in Python:

import thinkbayes2
from thinkbayes2 import Pmf

'pmf' = probability mass function
Chapter 2

Dice prob
pmf = Pmf ()
for x in [1,2,3,4,5,6]:
pmf.Set(x, 1/6)
print ("Here are your dice chances:")
print (pmf)

The cockie problem

pmf = Pmf ()

Prior distributio
pmf.Set ('Bowl 1', O
pmf.Set ('Bowl 2', 0

n
.5)

-3}

Update distribution based on new data (likelihood)

pmf.Mult ('Bowl 1', 0.75)

pmf.Mult ('Bowl 2', 0.5)

With update, dist. no longer normalized, but because Hl1 and H2 are mutually
exclusive and collectively exhaustive, can renormalize:

pmf.Normalize ()

#Next, find the posterior distributicn based on the abeove:

print (f"Bowl 1 {pmf.Prob('Bowl 1')}")

print (f"Bowl 2 {pmf.Prob('Bowl 2')}")

Let's make the above code more general:

First, define a class
'Cockie' maps hypos t
class Cookie (Pmf) :
derf _ init method gives each hypo the same prior probability
def _ init_ (self, hypos):
Pmf. init (self)
for hypo in hypos:
self.Set (hypo, 1)
self.Normalize ()

o thelir probabilities

To update info in light of new data (likelihood)
Loops through each hypo in the suite and x's its prob by the likelihood of the data under the hypo
Is computed by Likelihood
def Update (self, data):
for hypo in self.Values () :
like = self.Likelihecod (data, hypo)
self.Mult (hypo, like)
self.Normalize ()

Likelihood calculation

mixes = {
'Bowl 1' :dict(vanilla=0.75, chocolate=0.25),
'Bowl 2' :dict(vanilla=0.5, cheocolate=0.5),

}
Uses dictionary 'mixes' to map the name of a bowl to the mix of cookies in the bowl
def Likelihood({self, data, hypo):

mix = self.mixes [hypeol]

like = mix[data]

return like

1 th] inf
Now the novel info
1

hypos = ['Bowl 1', 'Bowl 2']
pmf = Cookie (hypos)

Update with likelihood
pmf.Update ("vanilla')

#Can print the posterior prob of each hypo:
for hypo, prob in pmf.Items ():
print (hypo, prob)

Advantage 1: provides a framework for seclving similar problems
Advantage 2: Generalizes to the case if we draw more coockies from same bowl:

SRM_2022 L. M. Saxton

dataset = ['vanilla', 'chocolate', 'vanilla']
for data in dataset:
pmf.Update (data)

for hype, prob in pmf.Items():
print (hypo, prob)

The Monty Hall Problem
To sclve, define a new class:
class Monty (Pmf) :

Same as Coockie Problem
def __init_ (self, hypos):
me.__ini:_(self)
for hypo in hypos:

self.Set (hype, 1)
self.Normalize ()

Same as Coockie Problem
def Update (self, data):
for hypo in self.Values () :
like = self.Likelihood(data, hypo)
self.Mult (hype, like)
self.Normalize ()

Not the same as Cockie Problem
def Likeliheood(self, data, hypo):

if hypo == data:
return 0
elif hypc == 'A':

return 0.5
else:
return 1

Novel info for Monty Hall Problem:

hypos = 'ABC'
pmf = Monty (hypos)

Calling Update is pretty much the same:
data = 'B'
pmf . Update (data)

Printing the results is the same:
for hypeo, prob in pmf.Items/():
print (hypo, prob)

Can see which elements of the framework are the same, can encapsulate them in an cbject:
A Suite is a Pmf that provides init , Update, and Print:

class Suite (Pmf):
"' 'Represents

SLEEE . VY

def Update (self, data):
'""Updates each hypothesis based on the data

def Print(self):
'"'Prints the hypothesis and their probabilities'''

Can implement through thinkbayes2.py:
Should write a class that inherits Suite and provides Likeliheood
For example:
from thinkbayes2 import Suite
class Monty (Suite) :
def Likeliheood(self, data, hypo):

if hypo == data:
return 0

SRM_2022 L. M. Saxton

elif hypeo == 'A':
return 0.5
else:
return 1

Novel info for this class:
suite = Monty ('ABC')
suite.Update ('E")
suite.Print ()

The M&M Problem

class M and M (Suite):

Likelihood is tricky here
First, Need to encode mixes from 1994 and 199é:

mix94 = dict(brown = 30,
yellow = 20,
red = 20,
green = 10,
crange = 10,
tan = 10)

mix96 = dict(blue = 24,

green = 20,
orange = 16,
yellow = 14,
red = 13,
brown = 13)

Then encode the hypotheses:
hypehA = dict(bagl = mix94, bag2 = mix96)
hypoB = dict(bagl = mix96, bag2 = mix9%4)

Then map from the name of the hypos to the representation
hypotheses = dict (A = hypoR, B = hypoB)
Now, can write Likelihood:
def Likelihood(self, data, hypo):
bag, coclor = data
mix = se=lf.hypotheses[hypo] [bag]
like = mix[color]
return like

Novel code for MEM Problem:

#This creates the suite and updates it:
suite = M and M('AR"')

suite.Update (('bagl', 'yellow'))
suite.Update (('bagZ', 'green'))

suite.Print ()
Exercise 2.1:

#Chapter 3

Dice problem

Three step strategy:

1. Choose a representation for the hypotheses
2. Choose a rep for the data

3. Write the likelihood function

class Dice (Suite):
def Likelihood(self, data, hypo):
Must be 0 bc hypo can't be more than sides of die
if hypo < data:
return 0
elaea:
return 1.0/hypo

Hypotheses = the individual die itself by face
suite = Dice([4, 6, 8, 12,20])

SRM_2022

Data = integers 1 - 20
6 is the data

suite.Update (4)
suite.Print ()

for roll in [6,8,7,7,5,4]:
suite.Update (roll)

suite.Print ()

The Locomotive Problem

e

" A Railroad numbers its locomotives in order 1...N. One day you see a loco.
"

e

with the number 60. Estimate how many locomotives the railreocad has.

Can break into 2 steps:
1. What did we know about N before we saw the data? (This is the prior.)

e He He He

with the number 60)7?

e

For 1. Let's assume that N is egqually likely to be any value from 1 to 1000:
hypos = range(l, 1001)

Now we need a likelihcod functien.
If we assume there's only/only pay attention to Company X

e

The likelihood of seeing any of Company X's locomotives is 1/N

So here's the likelihood functien:
class Train (Suite) :
def Likelihood(self, data, hypo):
if hypeo < data:
return 0
else:
return 1.0/hypo

def Mean(suite):
total = 0
for hypo, prob in suite.Items():
total += hypo * preb
return total

def Fercentile (pmf, percentage):
P = percentage / 100.0
total = 0

for val, prob in pmf.Items ():
total += prob
if total >=
return Value

hypos = range(l, 1001)

Here's the data update:
suite = Train (hypos)
suite.Update (50)

the guessed number having the highest probability.
t the goal.

Let's compute the mean of the posterior distribution (see Train)

Print the mean using Pmf as ALT

print (suite.Mean())

What 1f we want less arbitary assumptions?

With more data, posterior dist. based on different priors tend te converge

hypoes = range (1, 501)
suite = Train (hypos)

for data in [0, 30, 90]:
suite.Update (data)
print (suite.Mean())

2. For any given value of N, what is the likelihood of seeing the data (a2 loco.

L. M. Saxton

SRM_2022

hypos = range (1, 1001)
suite = Train (hypos)

for data im [&50, 30, 90]:
suite.Update (data)
print (suite.Mean())

hypos = range (1, 2001}
suite = Train (hypos)

for data im [50, 30, 90]:
suite.Update (data)
print (suite.Mean())

e M W e R

Can cons

class Train(Dice):

def _ init_ (self, hypos, alpha=1.0):

Pmf. init (self)

for hypo in hypos:

self.Set (hypo, hypeo** (-alpha))

self.Normalize ()

This is the code that const

hypos = range(l, 1001)

suite = Train (hypos)
suite.Update (60)
print (suite.Mean())

hypes = range (1, 501)

suite = Train (hypos)

for data inm [60, 30, S0]:
suite.Update (data)

print (suite.Mean())

hypes = range (1, 1001)
suite = Train (hypos)

for data inm [60, 30, S0]:
suite.Update (data)
print (suite.Mean())

hypos = range (1, Z2001)

suite = Train (hypos)

for data im [60, 30, 90]:
suite.Update (data)

print (suite.Mean())

estimate (or an interval).

M e e he

2 CREDIBLE INTERVAL

#Thinkbayes provides a function that computes percentiles:

anies with 100 locos, 10 companies

Once post. dist. found, useful

If more data not available, improve priors by getting more background info
A company with 1000 trains is not as likely as a company with only 1
Distribution of company sizes

ct a power law prior like this:

ructs the prieor:

Coemmon to use the mean, median, or value with max likelihcod
Usually report 2 wvalues; 90% chance the unknown value falls between them

def Percentile(pmf, percentage):
P = percentage / 100.0

total = @

for val, prob in pmf.Items():

total += prob
if total >=p:

return Value

Here is the code that uses

SLBE

tends to follow a power of law
If there are 1000 companies with fewer than 10 locomotives, might be 100 comp-

with 1000m and maybe 1 with 10,000

to summarize the results with a single point

L. M. Saxton

SRM_2022 L. M. Saxton

interval = suite.Percentile(5), suite.Percentile (

print (interval)

cdf = suite.MakeCdf ()
interval = cdf.Percentile(5), cdf.Percentile

print (interval)

Bowl 2 0.4
Bowl 1 0.6008000800000601

9981
882354

e
11764705882:

[Finished in 499ms]

References:

Downey, A. (2016) Think Bayes. Sebastopol, CA, USA: O’Reilly.

	Risk Modelling Activities

