Assignment 1:

- 1. Introduction (50 words)
- Importance of web app security, as it can lead to attacks in lower IP/TCP layers
- the goal of this summary is to present a blueprint for locating vulnerabilities that leave the app open to breach
- What will be discussed in this report
- o privacy concerns for health information (GDPR & HIPAA)
- o most relevant vulnerabilities in healthcare
- most common vulnerabilities for php websites
- Tools which can scan for and detect these vulnerabilities for subsequent mitigation (50 words)
- 2. Relevant Vulnerabilities (100 words)
- 2.1 Privacy Concerns for Healthcare
- HIPAA concerns (HIPAA, xxxx)
- o data privacy Access controls, Authentication (Gauthier & Merlo, 2012, web app handbook)
- access to service
- GDPR concerns (GDPR, 2018)
- privacy concerns
- human element (Human engineering book)
- 2.2 Demonstrated PHP Vulnerabilities
- Table with the following layout:
- Attack vulnerability
- Type of attack
- Area of website which is vulnerable
- Source
- Discuss the different attack types (with an image showing example of each type) according to Mitre framework.
 - DOS "due to attack-controlled infinite loop" (Shimatikov & Son, 2011:2
 - Missing authorization checks (ibid)
 - Cross-site Scripting (Gupta & Gupta, 2010)
 - Workflow violation (ibid)
 - File Inclusion (Gong & Zhao, 2015)
 - SQL Injection (Backes et al., 2017)
 - Command Injection (ibid)
 - Code Injection (ibid)
 - Attacker-Controlled Input (PHP book)
 - CSRF (Web app handbook)
 - Password/username bruteforcing (xxxx)
 - SSL certificate (xxxx)

(150 words)

- 3. Penetration Testing (50 words)
- Benefits of Pentesting (pentesting book)
- Why should companies pentest? (pentesting articles)
- What happens if companies do not pentest? (pentesting articles)
- Limitations of Pentesting (web app handbook)

• Scans are cursory – "Like knowing a window can be broken by a stone but not throwing the stone" – cannot truly assess the impact, though Mitre and others should be utilized.

- o Cannot find all vulnerabilities, only some
- Is only as good as the pentester

(200 words)

- 3.1 Pentesting Specification for xxx.php (150 words)
- In order to provide the most releveant pentest, the following assumptions have been made:
- the pentest will focus on the vulnerabilities which can be accessed at the application layer of the network (add attack surface table here)
- The pentest itself will be a black-box test (bug bounty hunting) = remote and dynamic to better mirror an actual web app attack
- any attack surface/vulnerability scans will be manual so as to lessen any unintentional denial of service (add tool table here)
- Password brute force is recommended but may cause denial of service
- only the information/forms provided on the website will be utilized
- Vulnerabilities within the application layer will be documented and exploited
- Vulnerabilities outside the application layer will be documented but not exploited
- Any possibility of denial or service will be documented but not exploited
- The following attack surface is relevant to the pentest based on a prelimiary scan (table area, relevant attack, source)
 - user form fields
 - hidden form fields
 - server side attacks
 - client-side attacks
 - human engineering
- Tools to use (Table tool, relevant attacks, source)
 - tool 1
 - tool 2
 - etc

3.1.1 Denial of Service Probability (50 words)

Not the intention of the pentester to cause a denial of service during testing, however the chance
of disruption during scanning does exist. May be prudent to perform attack surface and
vulnerability scans during off-hours to reduce chance of service disruption in line with
HIPAA/GDPR

(400 words)

3.2 Pentesting Timeline (100)

Depends on:

given the size and scope of xxxx.php the following timeline seems appropriate to perform a pentest:

(change this to an hour by hour/attack specific with linkedin article)

- 1. Day 1 cursory fingerprinting pentester will manual go through the website taking note of the
- 2. Day 2 attack surface scan using X tool, the website will be scanned for attack vectors
- 3. vulnerability scan Using tools x, y, z attack vectors will be scanned for exploitable vulnerabilities
- 4. Day 4-6 vulnerability documentation based on the previous scans, an attack framework will be compiled and assessed

5. Day 7-8 – Report compilation – based on the vulnerability documentation a detailed executive summary of the vulnerability findings will be presented

6. Day 9 – Report delivery – The report will be presented and discussed with relevant parties

Should this be an image or a table? (500 words)

4. Conclusion (100 words) (600 words)

Attack Name	Attack Type	Possible Attack Vector	Source
Denial of Service (DOS)			Shimatikov & Son, 2011
Missing Authorization Checks			Shimatikov & Son, 2011
Cross-site Scripting (XSS)			Gupta & Gupta, 2010
Workflow Violation			Gupta & Gupta, 2010
File Inclusion			Gong & Zhao, 2015
SQL Injection			Backes et al., 2017
Command Injection			Backes et al., 2017
Code Injection			Backes et al., 2017
Attacker-Controlled Input			PHP Book, xxxx
Cross-site Request Forgery (CSRF)			Web app handbook, xxxx
Cookie Tampering			Mitre, 2023
Brute Forcing			Mitre, 2023

Appendix I

Attack Name	Attack Likelihood	Attack Severity	Skill Level Required		
Attacker-Controlled Input	Medium	Medium	n/a		
Brute Forcing	n/a	High	Low		
Code Injection	High	High	n/a		
Modifying Cookies	High	High	Low	High	
Cross-site Request Forgery	High	Very high	Medium		

Cross-site Scripting	High	Very high	Low	High
Denial of Service	High	Medium	n/a	
File Inclusion	High	High	Low	Medium
Missing Authorization Checks	High	Medium	Low	
SQL Injection	High	High	Low	