

Work Factor as a Security Metric:

A Comparison of Traditional Middleware,
REST, and GraphQL API Active Reconnaissance

By

Laura M. Saxton

Supervisors
Douglas Millward

Dr. Cathryn Peoples

University of Essex
Department of Computer Science
Master of Science, Cyber Security

M.Sc. Dissertation

To Gavin, for whom
all this was done

2

Declaration

I hereby declare that this thesis presented for the degree of Master of Science in Cyber Se-

curity has

i. been written solely by myself.

ii. resulted solely from my own work except where explicitly stated otherwise.

iii. not been included, in part or in full, in any other publication, nor has this thesis been sub-

mitted for any other degree or professional qualification.

Additionally, I declare that

i. use of AI technology in this thesis was limited to troubleshooting coding errors and/or dep-

recated coding libraries during the artefact construction phase.

ii. all inclusion and utilisation of third-party software is compliant with the licensure of said

software from the date last accessed.

3

Abstract

While APIs are a common target of cyber attack, there is little understanding of how archi-

tectural idiosyncrasies between them impact security against malicious actors. This study endeav-

oured to perform such a comparison by applying Saltzer & Schroeder’s (1975) work factor

principle to an active reconnaissance sequence performed by hackers in the wild. The aim of this

study was to demonstrate the viability of the work factor metric as a security variable by compar-

ing differences in automated active reconnaissance output between a traditional views-rendering

middleware, REST API, and GraphQL API. The composite work factor metric was calculated us-

ing TOPSIS-AHP against security variables identified during automated active reconnaissance.

Chi-square calculations were conducted to demonstrate the validity of the TOPSIS-AHP calcula-

tion and the viability of the metric. While it was found that the GraphQL target had the most ad-

vantageous work factor, it also disclosed the least amount of attack surface information. The

inverse was true of the REST API, which had the least advantageous work factor yet resulted in

complete disclosure of the target’s attack surface. These findings suggest that while work factor

was demonstrated to be viable as a security metric, further research is needed to determine its role

in the decision-making practices of malicious actors in the wild.

Keywords: middleware, API, REST, GraphQL, Saltzer & Schroeder, work factor, hacking, active

reconnaissance

4

Acknowledgments

Thank you, firstly, to Doug and Cathryn, whose many hours of encouragement, anecdotes,

and advice provided the solid foundation from which I jumped when I embarked on this project.

Thank you to the Csec Club for their rallying spirit and morale throughout trying episodes of dis-

sertation distress – and for being the best colleagues I have ever encountered while sitting a course.

Thank you, finally, to my loving wife, Namwan, who, through pregnancy, birth, and infant, pro-

vided nothing less than complete love and support during this educational endeavour. My beshert, I

would not have been able to do this without you.

5

Table of Contents

Declaration... 3

Abstract...4

Acknowledgments.. 5

1. Introduction..15

2. API Design and Security.. 17

2.1 REST API Design.. 17

2.2 GraphQL Architecture... 21

2.3 API Security...25

2.4. API Security Metrics...28

2.4.1 Cryptographic APIs & Saltzer & Schroeder..28

2.4.2 Hacking REST & GraphQL... 29

3. Ethical Considerations..35

4. Dissertation Artefacts...36

4.1 Web Application Artefacts...36

4.2 Active Reconnaissance Artefacts... 40

5. Methodology...43

6. Data & Results..46

6.1 Raw Data Results...46

6.2 TOPSIS with AHP Results...50

6.3 Variable Correlation Results..51

7. Analysis & Discussion..56

7.1 Results Analysis...56

7.2 Study Limitations...60

6

7.3 Knowledge Gained.. 62

8. Conclusion.. 64

9. Cited References...67

10. Bibliography... 72

11. Appendices..75

11.1 Appendix I: Views-Rendering Middleware Source Code..75

11.1.1 Main Program Code...75

11.1.1.1 package.json... 75

11.1.1.2 server.js:..75

11.1.2 Models..79

11.1.2.1 order.js:... 79

11.1.2.2 product.js..79

11.1.2.3 user.js.. 80

11.1.3 Controllers..83

11.1.3.1 admin.js:...83

11.1.3.2 auth.js:.. 85

11.1.3.3 errors.js:.. 89

11.1.3.4 shop.js:..89

11.1.4 Views.. 93

11.1.4.1 404.ejs:..93

11.1.4.2 500.ejs:..93

11.1.4.3 Admin...94

11.1.4.3.1 add-product.ejs:...94

11.1.4.3.2 edit-product.ejs:..95

7

11.1.4.3.3 products.ejs:.. 96

11.1.4.4 Auth..98

11.1.4.4.1 create-user.ejs:...98

11.1.4.4.2 login.ejs:..99

11.1.4.5 Includes...101

11.1.4.5.1 add-to-cart.ejs:..101

11.1.4.5.2 end.ejs:.. 101

11.1.4.5.3 head.ejs:..101

11.1.4.5.4 navigation.ejs:... 101

11.1.4.6 Shop..103

11.1.4.6.1 cart.ejs... 103

11.1.4.6.2 index.ejs:... 104

11.1.4.6.3 orders.ejs:..105

11.1.4.6.4 product-detail.ejs:...106

11.1.4.6.5 product-list.ejs:... 107

11.1.5 Public..109

11.1.5.1 CSS... 109

11.1.5.1.1 form.css:..109

11.1.5.1.2 main.css:..110

11.1.5.1.3 product.css:... 111

11.1.5.2 JavaScript..112

11.1.5.2.1 admin.js:..112

11.1.6 Routes...113

11.1.6.1 admin.js...113

8

11.1.6.2 auth.js..114

11.1.6.3 shop.js... 115

11.1.7 Middleware...117

11.1.7.1 is-auth.js:...117

11.1.8 Util..118

11.1.8.1 path.js:...118

11.2 Appendix II: REST Backend Source Code..119

11.2.1 Main Program Code... 119

11.2.1.1 package.json..119

11.2.1.2 app.js...119

11.2.2 Models..122

11.2.2.1 post.js..122

11.2.2.2 user.js.. 122

11.2.3 Controllers..124

11.2.3.1 auth.js..124

11.2.3.2 feed.js..126

11.2.4 Routes...131

11.2.4.1 auth.js..131

11.2.4.2 feed.js..132

11.2.5 Middleware...134

11.2.5.1 is-auth.js..134

11.3 Appendix III: GraphQL Backend Source Code...135

11.3.1 Main Program Code...135

11.3.1.1 package.json:..135

9

11.3.1.2 app.js:..136

11.3.2 GraphQL...139

11.3.2.1 resolvers.js:...139

11.3.2.2 schema.js:...145

11.3.3 Models..147

11.3.3.1 post.js:...147

11.3.3.2 user.js:...147

11.3.4 Controllers..149

11.3.4.1 auth.js:.. 149

11.3.4.2 feed.js:.. 151

11.3.5 Middleware...156

11.3.5.1 auth.js:.. 156

11.4 Appendix IV: Views-Rendering Application Demonstration...157

11.5 Appendix V: REST Backend Demonstration...160

11.6 Appendix VI: GraphQL Backend Demonstration..163

11.7 Appendix VII: GraphQL Postman JSON Queries...166

11.8 Appendix VIII: Active Reconnaissance Source Code..168

11.8.1 Views-Rending Middleware...168

11.8.1.1 Step 1: Baseline Scanning..168

11.8.1.2 Step 2: URI Brute-Forcing...169

11.8.1.3 Step 3: Content Discovery..171

11.8.2 REST API...174

11.8.2.1 Step 1: Baseline Scanning..174

11.8.2.2 Step 2: URI Brute-Forcing...175

10

11.8.2.3 Step 3: Content Discovery..177

11.8.3 GraphQL API... 181

11.8.3.1 Step 1: Baseline Scanning..181

11.8.3.2 Step 2: URI Brute-Forcing...182

11.8.3.3 Step 3: Introspection Verification...184

11.8.3.4 Step 4: Schema Extraction..186

11.9 Appendix IX: Brute-Forcing Word List...189

11.10 Appendix X: Active Reconnaissance Full Data Results..197

11.11 Appendix XI: Weekly Update Example...199

11.12 Appendix XII: Bloom’s Taxonomy Worksheet..200

11

Index of Tables

Table 1: REST API Constraints.. 18

Table 2: OWASP API Security Cheat Sheets...26

Table 3: Saltzer & Schroeder Secure Design..28

Table 4: Hacker Types and Motivation...30

Table 5: OWASP Top 10 API Security Risks...33

Table 6: Work Factor Variables for Active Reconnaissance...44

Table 7: Averaged Active Reconnaissance Output...47

Table 8: TOPSIS with AHP Results...51

Table 9: Chi Square – System Information..52

Table 10: Chi-Square – Timestamp..52

Table 11: Chi-Square – HTTP Actual %...53

Table 12: Chi-Square – HTTP Scan %... 53

Table 13: Chi-Square – Attack Surface.. 53

Table 14: Chi-Square – Scans Performed...53

12

Table of Figures

Figure 1: RESTful Orthogonality... 17

Figure 2: Sub-Constraints of the REST Uniform Interface..18

Figure 3: Richardson Maturity Model.. 19

Figure 4: Palma et al. Research Trend..20

Figure 5: GraphQL Type System..22

Figure 6: GraphQL Component Interaction...23

Figure 7: GraphQL Type System Interaction...24

Figure 8: REST and GraphQL Attack Sequences...32

Figure 9: REST API Automated Reconnaissance Sequence..34

Figure 10: GraphQL API Automated Reconnaissance Sequence...34

Figure 11: VRMA – Unauthenticated...38

Figure 12: VRMA – Authenticated...38

Figure 13: REST API Backend – ‘User A’ Login... 39

Figure 14: GraphQL API Backend – 'User A' Login..39

Figure 15: Automated Reconnaissance Tools...41

Figure 16: REST API – Dirsearch CLI Argument Example...42

Figure 17: AHP Spreadsheet Calculations..45

Figure 18: TOPSIS Spreadsheet Calculations..45

Figure 19: VRMA – Nmap Output... 47

Figure 20: VRMA – Initial Dirsearch Output (HTTP GET)..48

Figure 21: VRMA – Authenticated Dirsearch Output (HTTP GET)..48

Figure 22: REST API – Nmap Output..48

Figure 23: REST API – Initial Dirsearch Output (HTTP PUT)...48

13

Figure 24: REST API – Authenticated Dirsearch Output (HTTP PUT)...48

Figure 25: GraphQL – Nmap Output (Initial).. 49

Figure 26: GraphQL – Dirsearch (HTTP POST)..49

Figure 27: GraphQL – Nmap Output (Introspection)...49

Figure 28: GraphQL – Graphw00f Output...49

Figure 29: GraphQL API – Clairvoyance Output...49

Figure 30: AHP of Independent Variables.. 50

Figure 31: TOPSIS Calculation Results...50

Figure 32: Trend – System Information... 54

Figure 33: Trend – Timestamp... 54

Figure 34: Trend – HTTP Actual %..54

Figure 35: Trend – HTTP Scan %..54

Figure 36: Trend – Attack Surface..54

Figure 37: Trend – Scans Performed.. 54

Figure 38: GraphQL IDE – Field Suggestion...59

14

1. Introduction

In 2023, 29% of all cyber attacks on the web targeted API technology (Akamai, 2024).

While this percentage has not yet eclipsed the rate of attack found against traditional web applica-

tions, APIs are “at the heart of most digital transformations today” (Akamai, 2024: 3) and are

therefore poised to become a larger attack vector as their profile on the web continues to grow.

Among the most popular architectures used are REST and GraphQL APIs (Bernardino et al., 2021;

Buna, 2019), and while several comparative studies concerning response time (Dimitrovski et al.,

2020), memory utilisation (Brito et al., 2019), CPU load (Arifin et al., 2023), and throughput (Lawi

et al., 2021) have demonstrated differences in quality of service between these API architectures,

there do not appear to be similar studies comparing REST and GraphQL against a quantifiable se-

curity metric.

Application of a security principle first cited in the 1970s may be able to bridge this gap:

Saltzer and Schroeder’s (1975) work factor for computer security. This principle has the potential

to measure a resource much in demand to the malicious actor: the minimal effort required for ex-

ploitation relative to vulnerability disclosure and/or exploit success. While no API architecture is

without vulnerability, it may be true that one could be more difficult to attack than another. If an

API architecture has a less advantageous work factor than another by virtue of its design, this could

impact a malicious actor’s desire for attack. And yet, Saltzer & Schroeder (1975) found work fac-

tor to be somewhat incongruous to the measurement of computer security. As a result, there is yet

to be a standardised, demonstrable quantification of this principle for computer security, which

presents the opportunity to explore two related research questions:

RQ1: Can work factor be quantified as a valid security metric which represents differences in

security between API architectures?

15

RQ2: Between traditional views-rendering middleware, REST, and GraphQL API architectures,

which has the most advantageous active reconnaissance work factor for malicious actors?

With corresponding hypotheses:

H0: Views-rendering middleware, REST, and GraphQL API architectures produce no dis-

cernible difference in work factor score.

H1: Views-rendering middleware, REST, and GraphQL API architectures produce a discernible

difference in work factor score.

To investigate the above, an exploratory study will be conducted against a traditional

views-rendering middleware application, a REST API, and a GraphQL API to observe possible dif-

ferences between the architectures’ work factor rankings. To do so, the study will demonstrate a

quantification of the work factor metric as a composite score based upon isolated security variable

output from the above artefacts. Measures of the work factor results will then be compared to reach

possible conclusions concerning, firstly, the validity of the work factor quantification as well as its

viability as a security metric, and, secondly, any observed differences in work factor between the

artefacts which may provide insight into their security profiles.

Thus, the remainder of this study is comprised of the following: Section 2 provides a review

of current literature concerning REST and GraphQL APIs at the design rule level, as well as trends

in API security research and malicious actor motivation and methodology. Section 3 presents ethi-

cal considerations in accordance with the requirements of computer science research (Bailey et al.,

2013). Section 4 discusses the building of the three middleware artefacts, the attack scripts devel-

oped, and third-party tools utilised. Section 5 presents the methodology of the study, including

work factor quantification methods and validity/viability measurements. Section 6 presents the re-

16

sults of the study followed by Section 7, which provides in-depth analysis, study limitations, and

knowledge-gained discussions. Finally, Section 8 concludes the study along with recommendations

for future research.

2. API Design and Security

2.1 REST API Design

The REST API design is essentially “a model of how the web should work” (Bernardino et

al., 2021: 958), and is comprised of six high-level design constraints (Fielding, 2000; Table 1)

along with “four guiding principles” (Friedrich, 2013: 7) for the uniform interface (Figure 2). A

representation of the orthogonal nature of the REST API constraints (Raj & Subramanian, 2019)

can be seen in Figure 1. These constraints are “aligned with the features of the Hypertext Transfer

Protocol (HTTP)” (Bogner & Kotstein, 2021: 155), though themselves do not constitute a standard

protocol. Arcuri et al. (2023) have noted this lack of standardisation has led to a wide variety of in-

terpretations for low-level implementation. Various textbooks and guidelines of best practice prin-

ciples exist to bridge the gap between theory and practice, yet these guidelines often differ in

length, clarity, specificity, and can provide contradictory advice (Alliyu et al., 2017).

17

Figure 1: RESTful Orthogonality; adapted from Raj & Subramanian (2019)

Table 1: REST API Constraints

Constraint Principle

Client-Server model Provides a separation of concerns

Stateless architecture Constrains the client-server interaction

Caching system Improves network efficiency

Uniform interface Decouples implementations from services

Layered system
Constrains component behaviour through hierarchical layers that
cannot “see beyond the immediate layer with which they are
interacting” (Fielding, 2000: 82-83)

Code-on-demand Simplifies clients “by reducing the number of features required to

be preimplemented” (Fielding, 2000: 84)

18

Figure 2: Sub-Constraints of the REST Uniform Interface

As a result, most of the real-world APIs surveyed throughout the above studies tend to hold

a maturity level of two according to the Richardson Maturity Model (Fowler, 2010; Meshram,

2021: 3; Figure 3). This level appears to be the industry standard – a conclusion also reached by

Bogner & Kotstein (2021). At the same time, Bernardino et al. have noted that “violating any of

[REST’s] set of principles puts its objective at risk” (2021: 958), which is to say its ability to mir-

ror the lightweight protocol architecture of the web. What is not clear is how the same violations

may affect API security.

Empirical study of REST API de-

sign seems to cluster in two areas: (i)

quantifying the level of REST design rule

adoption within the industry, and (ii) ex-

ploring developers’ attitudes and under-

standing of REST design rules.

Interesting trends can be found in both ar-

eas. In the former, studies measuring de-

sign rule adherence by Guéhéneuc et al.

(2016), Baez et al. (2016), and

Bernardino et al. (2021) produce varying

results. Of the 73 principles tested by

Guéhéneuc et al. (2016), 61% were prop-

erly implemented; Baez et al. (2016)

found an adherence rate of approximately

88% among 17 heuristics; and finally, of the 26 API features surveyed in Bernardino et al. (2021),

the proper implementation rate was 50.56% with very little overlap in design rule choice.

19

 Figure 3: Richardson Maturity Model

At a more granular level, Palma et al.’s research (2014; 2017; 2021; 2022) concerns the

prevalence of linguistic anti-patterns in REST API design rules. Patterns and anti-patterns are

conceptualised around low-level implementation, measuring the use of, for example, ‘CRUDy

URIs’ versus ‘Verbless URIs’, or ‘Contextualised Resources’ versus ‘Contextless Resources’. The

trend of the empirical results shows an almost dichotomous decrease in linguistic anti-pattern utili-

sation between 2014 (53.01%) and 2022 (79.16%) (Figure 4), demonstrating an overall trend of

API maturation over time. A notable omission throughout the above studies, though, is the discus-

sion of whether an increased adoption of proper RESTful linguistic patterns improves overall API

security.

At the same time, empirical analysis of security at the design-rule level may be prohibi-

tively complex. As design rule variation between APIs is not consistent, idiosyncrasies across API

architectures have been shown to hinder the generalisability and construct validity of results by a

20

Figure 4: Palma et al. Research Trend

single study (Baez et al., 2016; Bernardino et al., 2021; Bogner et al., 2022; Guéhéneuc et al.,

2016; Palma et al., 2014). Harder still is the extrapolation of individual design rules onto generic

security parameters. It is perhaps not unexpected, then, that security metrics are missing from these

analyses.

In contrast, when looking at studies detailing API developers’ attitudes and understanding

of REST API design, security as a topic is not so much absent but rather appears as a non-consider-

ation. An evaluation study conducted against 32 REST API design guidelines (Alliyu et al., 2017)

found that, while the topic of security was mentioned in 15 guidelines, security was not considered

an “interesting or important [topic] by practicing API designers” (Alliyu et al., 2017: 3). These re-

sults are similar to a finding in Bogner and Kotstein’s Delphi study (2021) regarding industry pro-

fessionals’ opinions of the importance of REST API design rules. When asked about “perceived

rule impact on software quality” (Bogner & Kotstein, 2021: 165), none of the participants consid-

ered any rules assigned high-to-medium importance to have an effect on security. Bogner & Kot-

stein are careful to avoid a generalisation of results due to the small sample size and homogeneous

geography of the participants; yet, when considered in tandem with Alliyu et al. (2017), it appears

that developers are not deeply engaged with API security conceptualisation at the design level.

2.2 GraphQL Architecture

GraphQL is an API “query language and execution engine” (Fernandez et al. 2023: 202:3)

distinct from RESTful architecture. Developed by Facebook in 2012 and later released as an open

source standardisation, GraphQL is meant to be “an alternative to solve the [performance] prob-

lems found in traditional REST technology” (Fernandez et al., 2023: 202:3). To accomplish this,

rather than executing static request protocols over HTTP, GraphQL “encodes in a uniform lan-

guage the model capabilities of a type system based on five design principles” (Fernandez et al.

21

2023: 202:3; GraphQL, 2021; Figure 5) dynamically delivered over the HTTP GET and/or POST

methods. This type system defines “schematic types for objects [at] the application level that are

further used to formulate queries” (Bansal, 2023: 9), resulting in advantageous usability and per-

formance alongside complex query construction and response execution.

 The GraphQL execution en-

gine involves many components

to craft specific schematic queries

or changes to data (‘mutations’)

on the client-side and return as-

needed resources from the server-

side (Fernandez et al. 2023; Fig-

ures 6 & 7). This complex opera-

tional dependency relies on the

schema structure and type system

for client-side queries and muta-

tions, as well as server-side re-

sponses. The hierarchical nature

of the type system can produce nested queries and responses that may require multiple cycles to re-

turn the desired response. These nested queries are “a traversal of [one node] into neighboring

nodes” (Diaz et al., 2020: 207) wherein a list type includes a field of another list type, both of

which must be cycled through to identify a desired resource. These queries also include a “worst

case response size [that is] exponential in the size of the query” (Baudart et al., 2019: 14), which

results in either a denial of service or program crash (Brito et al., 2019).

22

Figure 5: GraphQL Type System

Much attention has been given to identifying and mitigating these problem queries to avoid

such outcomes in the wild. To this end, Hartig and Perez’s (2018) semantic formalisation of

GraphQL queries, Diaz et al.’s attempt to expand upon Hartig and Perez by proposing a “mecha-

nized formalisation of GraphQL” (2020: 202), and Baudart et al.’s dynamic Machine Learning “so-

lution that predicts query cost based on experience generated over multiple user-server

communication sessions” (2021: 1146) have been successful in quantifying and identifying worst-

23

Figure 6: GraphQL Component Interaction; adapted from Fernandez et al. (2023)

case response sizes through static and automated methods. An interesting inclination within these

studies is the language employed by researchers to describe these worst-case response sizes. Re-

searchers favour economic metaphor (e.g., high cost, prohibitively expensive (Baudart et al., 2019:

14)) to equivalent security vocabulary (e.g., excessive resource consumption, denial of service

(OWASP, 2023)), which could suggest a disconnect between observable trends in GraphQL archi-

tectures and the security concerns they imply.

Part of this disconnect could stem from the difficulty of API security quantification, so that

researchers avoid conjecture by focussing only on economic qualities that are more reliably mea-

surable. Yet, an absence of security within the GraphQL design itself may also be presumed by re-

searchers, as the security philosophy of the architecture has been described colloquially as “You do

security. We give you an API specification […] then you do security the way you need to.” (Doolit-

tle, 2019: 119). Empirical studies evaluating GraphQL design seem to reflect this sentiment. Basti-

24

Figure 7: GraphQL Type System Interaction; adapted from Fernandez et al. (2023)

das et al.’s quality in use evaluation found their GraphQL “application’s implementation complied

with 84.11% [of the ISO 25040 quality model] which is considered an ‘opportunity’ to improve

economic, health, or environmental outcomes” (2022: 25). But the security implications of lower-

than-expected Errors in a Task and Trust measurements are not discussed. Consens et al.’s simple

cycle evaluation found that 39.7% of evaluated schema contained “at least one simple cycle”

(2019: 4), with the majority of these (68.9%) containing multiple cycles. While the results identify

an interesting “distribution [resembling] a power law” (Consens et al., 2019: 4), no security impli-

cations of such a large portion of vulnerable cycles are explicitly discussed.

Key advantages and disadvantages of the GraphQL architecture in Brito et al.’s (2019) mi-

gration study do isolate important components of GraphQL, such as client-specified queries, intro-

spection, information hiding, and complex caching, but do not discuss possible security holes when

migrating to these structures from REST. Interestingly, Baudart et al.’s (2019) empirical study of

GraphQL schemas does mention the vulnerability implications of exponential responses and lack

of pagination patterns in schemas, but again favours economic metaphor over security-specific lan-

guage (“avoid the negative consequences of expensive queries” (Baudart et al., 2019: 14)). At the

same time, possible implications of the varied use of naming conventions and the security implica -

tions regarding “reliance on different GraphQL features (e.g., unions, custom directives, subscrip-

tion, mutation)” (Baudart et al., 2019: 11) are not discussed. Baudart et al.’s (2021) subsequent

exploration of the effect of Machine Learning on GraphQL accuracy, feature selection, and practi-

cality is similarly absent of any security discussion.

2.3 API Security

Though security at the design level of REST and GraphQL APIs is not overwhelmingly

present in formal literature, industry whitepaper guidelines on the topic are quite robust. The

25

OWASP cheat sheet series (2024a; 2024b; Table 2) provides a comprehensive checklist of security

measures tailored to the idiosyncrasies of REST and GraphQL and their architectural needs. It is

important to note that, while input validation, access control, rate limiting/API keys, and error han-

dling are present for both architectures, many of the security recommendations are architecture-

Table 2: OWASP API Security Cheat Sheets; adapted from OWASP (2024a & 2024b)

 REST Security Cheat Sheet GraphQL Security Cheat Sheet

HTTPS Input Validation

Access Control General Practices

JWT Injection Prevention

API Keys Process Validation

Restrict HTTP Methods DOS Prevention

Input validation Query Limiting (Depth & Amount)

Validate Content Types Timeouts

Validate request content types Query Cost Analysis

Send safe response content types Rate Limiting

Management Endpoints Server-side Batching and Caching

Error handling System Resource Management

Audit Logs Access Control

Security Headers General Data Access

CORS Query Access (Data Fetching)

Sensitive Information in HTTP Requests Mutation Access (Data Manipulation)

HTTP Return Code Batching Attacks

Mitigating Batching Attacks

Secure Configurations

Introspection + GraphiQL

Don’t Return Excessive Errors

26

specific. HTTP/headers security, endpoint management, and content validation are unique to

REST, while denial of service (DOS) prevention, batching attacks, and introspection are unique to

GraphQL. This is not to suggest that HTTP is not a component of GraphQL security, nor should

REST be considered immune to DOS attacks; yet, what is apparent is a different emphasis on the

critical aspects of their respective attack surfaces.

Wider API security literature tends to approach vulnerability mitigation at a higher, archi-

tecturally agnostic level of analysis. Munsch & Munsch (2021) have noted that API security and

traditional web application security share very little overlap, while Qazi found that “APIs [used in

cloud computing] are insecure [and] users depend on the overall security of the network instead of

standalone API security” (2023: 8). Al-Rumain & Pawar (2023) noted that different API types

(e.g., private APIs, partner APIs, and public APIs) have different security risk sensitivities. These

findings support similar, non-empirical assertions of API security (Aleks & Farhi, 2023; Ball,

2022; Siriwardena, 2020), and, importantly, highlight the possibility that different APIs may be

vulnerable in different ways to different attacks. But overall, as with the architecture-specific liter-

ature above, the possibility of low-level, divergent security needs is not explored. APIs are instead

grouped together as a security monolith with identical attack profiles and mitigation suggestions,

which are left to the API developers to parse and implement.

The question may then be: how can a more individualised set of standards for middleware

security metrics be, firstly, isolated, and, secondly, quantified? As the structure of every API is as

varied as the intentions of malicious attackers who may seek to compromise them, relying on a sin-

gle security variable would not be recommended. Yet it may be possible to quantify and correlate

different security variables to better understand how different API architectures react to certain vul-

nerabilities. This may be feasible by extrapolating trends found within cryptographic API security

research onto the practices of API hackers, both ethical and malicious.

27

2.4. API Security Metrics

2.4.1 Cryptographic APIs & Saltzer & Schroeder

To this end, a longitudinal literature review by Dwyer et al. (2023) provides a starting point

by proving a link between 47 years of cryptographic API design recommendations and Saltzer and

Schroeder’s Secure Design paradigm (1975; Table 3). Subsequent API design recommendations by

Gutman (2002), Bloch (2006), Green and Smith (2016), and Myers and Stylos (2016) all have a

common ancestor in Saltzer and Schroeder, while Acar et al. (2017), Assal & Chiasson (2019),

Hallett et al. (2019), Anthonysamy et al. (2020), and Fulton et al. (2020) provide empirical analysis

that can be traced back to the principles of economy of mechanism, open design, fail-safe defaults,

separation of privilege, and least privilege.

Of particular relevance among these studies is the methodology employed in the Fulton et

al. study to measure the severity “metrics

across different vulnerability types and sub-

types” (2020: 119). This method (i) reduced at-

tacks to their individual sequence components,

(ii) calculated how many steps were required

for vulnerability execution, and (iii) quantified

the difficulty of completing such an execution,

resulting in three separate security variables.

While the goal of Fulton et al. was to deter-

mine “how the different vulnerability types dif-

fer from each other” (2020: 118), a similar

method could be extended to quantify possible

28

Table 3: Saltzer & Schroeder Secure Design;
adapted from Saltzer & Schroeder (1975)

Secure Design Principles

(1) Economy of mechanism

(2) Fail-safe defaults

(3) Complete mediation

(4) Open design

(5) Separation of Privilege

(6) Least privilege

(7) Least common mechanism

(8) Psychological acceptability

(9) Work factor

(10) Compromise recording

security differences among API architectures if applied in a way that takes the security variable re -

sults of a target and combines them into a composite security metric.

The need for a composite score that reliably measures differences in API architectural secu-

rity may find a candidate in Saltzer & Schroeder’s work factor principle. Work factor measures “[a

comparison of] the cost of circumventing the mechanism with the resources of the potential at-

tacker” (Saltzer & Schroeder, 1975: 1283). Considered by Saltzer and Schroeder to “apply only

imperfectly to computer systems” (1975: 1283), with the proliferation of automated hacking tools

(Farhi, 2024; Nmap, n.d.; Soria, 2022; Stupin, 2023) one could surmise an even larger chasm than

when the paper was first published. But if ‘cost’ is understood to be the information uncovered by

the hacker for their time alongside the tools they must use to extract it, work factor becomes highly

applicable to the modern hacker.

Recent studies surrounding hacker motivations have found ease of attack to be a notable in-

fluence when selecting a possible target (Cito & Happa, 2023; Hu et al., 2018), and as networks,

web technologies, and hacking methodologies have advanced, so too has the difficulty of breaking

systems. Work factor could serve as a type of composite metric composed of certain security vari-

ables related to a demonstrable exploitation that measures the efficacy of an attack on particular ar-

chitectures or technologies. The composite score could be used to compare these architectures or

technologies, or to correlate relationships between work factor and other security variables. Adapt-

ing security variables into a single work factor score which accurately reflects the efficacy of an

API exploitation is dependent on the hacker mindset and toolbox, which will now be explored.

2.4.2 Hacking REST & GraphQL

Though “historically, hackers were known as one generic group” (Chng et al., 2022: 2), the

hacker mindset is not uni-dimensional. Chng et al. (2022), in their longitudinal literature and topol-

29

ogy review, found thirteen different hacker types, all with varying methods and motivations (Table

4). In addition to the listed motivations below, Hu et al. also found “enjoyment [and] maximiz[ing]

expected value” (2018: 384) to be important factors for target selection among surveyed bug

bounty hunters. The typical hacker is usually looking to make the biggest impact in the shortest

amount of time, with only state actors engaging in drawn-out, multi-stage attack sequences

(Chowdhury et al., 2022).

Table 4: Hacker Types and Motivation; adapted from Chng et al. (2022)

Types Definition Strategies Motivation

Novices Low-skilled, mostly tool-
dependent

Reuse the code/tools/scripts
of others. No sophistication
or anonymity

Curiosity,
notoriety,
recreation

Cyberpunks
Low-to-medium skill;
cause chaos for fun

Can modify code; basic
attack vectors/DOS

Financial,
notoriety,
revenge,
recreation

Insiders Disgruntled current or ex-
employees

Sell company info / launch
an insider attack

Financial,
revenge,
ideology

Old Guards

Non-malicious, but have
“no respect for personal
privacy” (Chng et al., 2022:
4)

Use scripts and tools to
expose vulnerabilities in
existing systems. White hats /
grey hats

Curiosity,
notoriety,
recreation,
ideology

Professionals
Extremely high-skilled,
gun-for-hire / criminal
activity

Full attack vectors; highly
sophisticated

Financial,
revenge

Hactivists
Further political agenda /
fuel political change

Use injections, web server
misconfiguration, etc.

Notoriety,
revenge,
recreation,
ideology

Nation States Highly trained, cyber
warfare

Conduct multi-level attacks
Financial,
revenge,
ideology

30

Students
Non-malicious, hack “to
gain knowledge” (Chng et
al, 2022: 4)

May use code like novices
with modifications to test
systems. Likely to report
vulnerabilities

Curiosity

Petty Thieves Low-to-medium skill,
scammers

Use Trojans, ransomware,
etc.

Financial,
revenge

Digital Pirates Distribution of copyrighted
material

Steal copyrighted content Financial

Online Sex
Offenders

Cyber predator Target social media and the
dark web

Sexual
impulses

Crowdsourcers
Group hacking, usually to
solve a problem through
dubious means

Pool skill sets for malware,
botnets, etc.

Notoriety,
revenge,
recreation,
ideology

Crime Facilitators Tool / technical know-how
sharing

Offer Cyber-criminal
services; phishing, malware,
etc.

Financial

The concerns of the malicious actor could be framed as work factor considerations, as those

engaging in illegal activity would have a desire to leave as small an attack footprint with the largest

payout in the shortest amount of time to avoid detection and possible legal action. Additionally, a

minority of those who engage in hacking activities are considered highly skilled, with the rest sy -

phoning attack vectors from open-source/released code and tools. As a result, most attack se-

quences involve known attack vectors rather than zero-day (Chowdhury et al., 2022) or business

logic (Ball, 2022) attacks, which are novel to the application and take considerable skill to exploit.

In other words, very few malicious actors are skilled enough to complete high-stakes, long term

cyber attacks. Most are looking for the quickest, easiest form of attack to accomplish their goals.

API hacking itself has known API attack sequences (Figure 8), developed for REST by

Corey J. Ball (2022) and for GraphQL by Nick Aleks and Dolev Farhi (2023); both sequences can

uncover and exploit vulnerabilities found in the OWASP API Top Ten API Security Risks (Table 5)

31

32

Figure 8: REST and GraphQL Attack Sequences; adapted from Ball (2022) & Aleks &
Farhi (2023)

Though any of the OWASP security risks and corresponding API attack sequences could qualify

for work factor security quantification, active reconnaissance (AR) may be the most pertinent seq-

uence for an initial demonstration of the work factor security metric due to the following: first, ac-

tive reconnaissance is a required preliminary activity before any malicious action, no matter the

middleware architecture (Ball, 2022). At the same time, it can be a time-consuming process (Pax-

ton-Fear, 2021), which may influence the overall effectiveness of AR on a particular API architec-

ture. Critical system and target information (Ball, 2022) is often disclosed, which can offer

convenient security variables to cal-

culate a composite score. And finally,

key aspects can be automated with

brute-force scanning tools (Aleks &

Farhi, 2023; Ball, 2022) which sim-

plifies timestamping the AR se-

quence.

Automated testing aims to dis-

cover the baseline and content infor-

mation of a target API (Figures 9 &

10), which can then be analysed more

thoroughly with manual testing. Auto-

mation aims to minimise the effort re-

quired to locate or brute-force certain targets, which is the exact type of data a work factor metric

could be used to measure. While differences in REST and GraphQL AR do exist, these variances

can be calculated into the composite metric, which would normalise discrepancies between archi-

tectural measurements and prevent potential false equivalencies that could be present between

33

Table 5: OWASP Top 10 API Security Risks; adapted
from OWASP (2023)

Risk

Broken Object Level Authorisation

Broken Authentication

Broken Object Property Level Authorisation

Unrestricted Resource Consumption

Broken Function Level Authorisation

Unrestricted Access to Sensitive Business
Flows

Server Side Request Forgery

Security Misconfiguration

Improper Inventory Management

Unsafe Consumption of APIs

other measures of the same data.

Quantifying the raw data into a comprehensive work factor metric would involve the calcu-

lation of a composite score into a single measurement. TOPSIS with AHP (TOPSIS-AHP) has been

demonstrated in research as a highly reliable composite metric calculation (Balioti et al., 2018;

Borroel et al., 2022; Cokrowibowo et al., 2020). AHP stands for ‘Analytic Hierarchy Process’ and

performs a normalisation of category weights to be used in the TOPSIS calculation for representa-

tive weighting of a positive or negative factor. TOPSIS is essentially a composite calculation com-

prised of several steps to assess multiple independent variables of a single dependent variable,

which results in a normalised composite score ranked against other dependent variables. The final

TOPSIS metric can be interpreted as a ranking of each dependent variable’s distance from the

ideal, with the ideal being an averaged score of 100%.

While TOPSIS-AHP is most often used within commercial industry to rank certain risk fac-

tors essential for operation, the equation could be extended to quantify work factor. The metric

herein has been conceptualised as essentially a ranked risk score (the risk being wasted time, i.e.,

34

Figure 10: GraphQL API Automated Reconnaissance Sequence

Figure 9: REST API Automated Reconnaissance Sequence

work factor) that requires the quantification of multiple, sometimes divergent variables with dis-

parately assigned weights. It is important to note, though, that the TOPSIS-AHP calculation is sub-

jective insomuch that the weighted values, though normalised through AHP, are determined by the

author’s opinion, however informed by research. Variable comparisons should be carried out

alongside TOPSIS-AHP to determine the degree of correlation for metric validity, for example in

the form of chi-squares (Downey, 2014).

It should additionally be noted that the composite variable of the AR work factor would not

result in a definitive security metric but rather provide a work factor-based metric against which

other metrics could be measured, either comparatively or correlatively (Downey, 2014) depending

on the focus of the research. That said, within this study it may nevertheless be possible to deter-

mine which design aspects of a given API architecture impact the work flow of AR and, therefore,

to present conclusions regarding the security of an API architecture from a work factor perspective.

3. Ethical Considerations

While this dissertation does not involve human participants, from an ethical standpoint

“publication and wide dissemination of vulnerability research should [include the consideration of]

its benefit to malicious actors” (Bailey et al., 2013: 9). In this regard, the dissertation certainly has

the ethical risk of disclosure, whereby the publishing of a legitimate active reconnaissance hacking

sequence, and the results of deployment success or failure against targeted API architectures, could

be used as an effective blueprint for hacking with minimal effort by a malicious actor.

To prevent such a scenario, this study confines the active reconnaissance sequence to auto-

mated aspects only, as the automated process is limited to exploratory information revelations that

do not detail how to spot vulnerabilities as such but rather showcases where certain system infor-

mation types can be found. Subsequent investigation and possible exploitation of any vulnerable

35

aspects of a target are not extrapolated upon. This strategy intends to keep the study replicable, al-

beit with obfuscation as a deterrent to low-skilled actors without the means or knowledge to further

exploit vulnerabilities. This is done with the intention to satisfy the ethical requirement of avoiding

excessive, unnecessary disclosure in vulnerability research.

Additionally, this project involves the use of third-party programming tools within the ac-

tive reconnaissance sequence. All included tools have been checked for applicable licensure to ver-

ify permission granted for use in research studies. Any tools that did not provide proper

permissions have been excluded. Likewise, all instances of tool use mentioned in the dissertation

proper shall include citation and acknowledgement of authorship/ownership as required.

4. Dissertation Artefacts

To successfully test the project hypothesis two artefact types were required: web applica-

tion code for testing and AR scripts for scanning. While original web application source code could

be written in full, third-party active reconnaissance tools were utilised for AR as these are widely

used by bug bounty hunters and malicious actors in the wild (Aleks & Farhi, 2023; Ball, 2022;

Cito & Happe, 2023). This was done, firstly, to streamline timestamp and variable output, and sec-

ondly, to align as much as possible with real-world application of the automated active reconnais-

sance process. The characteristics and design methodology for both artefacts are expanded upon

below.

4.1 Web Application Artefacts

The web application artefacts comprised of a views-rendering middleware application

(VRMA), a REST API backend, and a GraphQL backend (Appendices I - III). The code and design

of the artefacts were written in JavaScript on a Node.js backend with a MongoDB database system

36

based on the content of Maximillian Schwartzmüller’s course Node.js - The Complete Guide

(2019). ChatGPT (OpenAI, 2023) was used for troubleshooting deprecated or broken code exam-

ples when present; otherwise, ChatGPT was not consulted as an independent coding source. Au-

thentication, authorisation, and validation measures were implemented alongside relevant HTTP

headers and HTTP method calls. The Schwartzmüller (2019) course content was utilised due to the

scope of the modules, which ultimately produced three separate, industry-relevant web application

artefacts with different middleware strategies: VRMA, REST, and GraphQL, while at the same

time being very similar in design. Application similarity across the artefacts was sought to min-

imise the chance of spurious variables impacting the validity of the work factor measurement.

The VRMA (Figures 11 & 12) was designed to emulate a simple book shop in the classic

MVC style, equipped with 17 endpoints and middleware tied directly to HTML views files. Routes

were executed along HTTP GET and POST methods, with application logic for delete executing

both along the DELETE HTTP method call and the POST HTTP method call. The presence of dif-

fering delete method calls was meant to showcase the multiple routing options possible in MVC

applications in the course instruction and was kept for authenticity. The authentication mechanism

of this application employed session cookies to verify authorisation, with user validation imple-

mented within the application models. Testing comprised of console-logged success and error mes-

sages, which were then investigated and mitigated as needed. User functionality was enforced

through authentication and authorisation, with user-specific access controls in place (Appendix

IV).

The REST and GraphQL API backends did not include JavaScript frontends, as such addi-

tions were determined to be out of scope for this study. Both REST and GraphQL backends,

equipped with seven and nine endpoints, respectively, emulate a message feed system wherein ind-

37

ividual users can create, edit, and delete a message post and see the posts of other users. For the

REST backend (Figure 13), HTTP GET, POST, PUT, and DELETE method calls were utilised

among the endpoints, avoiding CRUDy-URL language more common in traditional application

middleware (Palma et al., 2022). The GraphQL backend (Figure 14) utilised both HTTP GET and

POST methods for a single API endpoint: http://localhost:5000/api/graphql. Both

APIs were written following MVC conventions, albeit with some architectural modifications, in-

cluding the absence of views. Postman (Postman, 2024) was used to visualise data without a fron-

tend, and to test endpoint and application logic errors.

The authentication mechanism of both APIs utilised a JWT token generated upon login. The

token was included in the response to the HTTP request by course instruction, and so was left in-

tact during subsequent API testing and scanning. Testing the APIs included HTTP requests for the

REST API, which returned failed authentication messages or failed authorisation messages when

applicable (Appendix V). GraphQL endpoints lay in the schema and resolver functions, which

were each tested with a JSON query or mutation generated by ChatGPT (OpenAI, 2024; see Ap-

38

Figure 11: VRMA – Unauthenticated Figure 12: VRMA – Authenticated

pendix VII), similarly resulting in failed authentication messages or failed authorisation messages

when applicable (Appendix VI).

39

Figure 14: GraphQL API Backend – 'User A' Login

Figure 13: REST API Backend – ‘User A’ Login

4.2 Active Reconnaissance Artefacts

As noted above, the active reconnaissance process involves gathering baseline intelligence

leading to API content discovery, traditionally in the form of endpoint discovery (Ball, 2022). Be-

cause this study sought to align with the ethical considerations discussed above, exploration was

limited to automated scanning reconnaissance activities. Automated reconnaissance involves diver-

gent sequences for VRMAs/REST APIs and GraphQL APIs (Figure 15; see Appendix VIII). The

tools chosen for scanning were based on the following criteria:

1. popularity and relevance within the hacking community

2. ability to be executed on a CLI terminal and integrated into BASH script

3. range of customisable commands for scanning

Nmap (Nmap, n.d.), a network scanning tool, was chosen for baseline scanning and

GraphQL introspection verification, as it can disclose helpful preliminary information. Dirsearch

(Soria, 2022), an HTTP/URI brute-forcing tool, was chosen for the initial scan of URI endpoints

for all three artefacts, as this tool has the ability to scan different HTTP method calls when clarified

in the command line argument. Graphw00f (Farhi, 2024), a GraphQL reconnaissance tool, was

used in addition to Nmap introspection scanning as a server fingerprinting tool during introspection

verification. As GraphQL introspection was not implemented in the GraphQL artefact code, Clair-

voyance (Stupin, 2023) was chosen to reverse engineer the GraphQL by brute-forcing the schema,

a common tactic when introspection is disabled or missing (Aleks & Farhi, 2023).

The word list utilised for the brute-forcing tasks (Appendix IX) was adapted from the 2m-

subdomains.txt word list distributed by the popular word list provider assetnote.io (Assetnote,

2024). The first 1000 words of the list were included, along with VRMA-, REST-, and GraphQL-

40

specific vocabulary, to allow for complete attack-surface disclosure during reconnaissance testing.

Though it is unlikely for such an outcome to occur in the wild, because a goal of this study is to

41

 Figure 15: Automated Reconnaissance Tools

demonstrate work factor as a viable security metric, the possibility for full attack-surface disclo-

sure would result in the most accurate metric demonstration in relation to the artefacts tested.

 Command line arguments for each tool with each artefact were first cultivated for optimal

results, including subdirectory or suffix commands when necessary (Figure 16). The addition of

subdirectories or suffixes to CLI arguments were chosen based on common VRMA and API end-

point syntax (Ball, 2022; Aleks & Farhi, 2023) along with artefact idiosyncrasies. To provide sta-

tistically significant averages across the security variables, multiple instances of the active

reconnaissance sequence were implemented. BASH code was used to automate each scan sequence

to perform 50 iterations with generated output and timestamps. ChatGPT (OpenAI, 2024) was

utilised for troubleshooting deprecated/broken code attempts. Finally, required files and directories

were created to store the scan sequence output for subsequent data analysis and manipulation.

 Because the different middleware artefacts required different AR foci, BASH code differ-

ences exist between the artefacts. The REST and GraphQL API BASH code for URI Brute-forcing

and Content Discovery (REST API

scans only) was equipped with a

‘GraphQL tripwire’ (Figure 16),

whereby if the /graphql end-

point were appended to the output

document a parser would add this

result to an array and the program

would terminate upon completion

of HTTP GET and POST scans.

This was done to best mirror real-world scanning, wherein were a hacker to find a /graphql

42

Figure 16: REST API – Dirsearch CLI Argument Example

endpoint, the scan would normally be terminated.

Additionally, as VRMAs use limited HTTP call methods, URI Brute-forcing and Content

Discovery sequences utilised only the main four HTTP calls: GET, POST, PUT, and DELETE

while REST scans used five, adding the PATCH call. This was done to reflect the information dis-

closed during Baseline Scanning, including the software version an application runs (e.g., Express

Middleware) which impacts the proceeding URI Brute-forcing and Content Discovery scan argu-

ments. The VRMA artefact required 3 subdirectory variables (/auth, /admin, /user) for the

initial Dirsearch (Soria, 2022) scan with four HTTP method calls, totalling an iteration of 12. The

same scan with two additional suffix variables (/ and /{id}) was performed for the authenti-

cated Dirsearch (Soria, 2022) scan, totalling the same iteration with a doubled word list to account

for both suffixes.

The API-specific code used against both REST and GraphQL APIs required 5 subdirectory

variables (/api, /auth, /admin, /api/auth, /api/admin) and five HTTP method calls

for their initial Dirsearch (Soria, 2022) scan, totalling an iteration of 25. The same scan with two

additional suffix variables (/ and /{id}) was similarly performed against the REST API for

the authenticated Dirsearch (Soria, 2022) scan, totalling the same iteration with a doubled word list

to account for both suffixes. The GraphQL sequence diverged into Introspection Verification with

Nmap (Nmap, n.d.) and GraphWoof (Farhi, 2024) scans, as well as Schema Extraction with the

Clairvoyance (Stupin, 2023) tool. None of the resulting scans contained additional suffixes or sub-

directories to effect iteration.

5. Methodology

As discussed above, work factor as a security metric requires the analysis of multiple inde-

43

pendent security variables interacting with a dependent artefact variable. As automated AR outputs

data which can be used as various independent variables, scan code was designed to return 50 iter-

ations of raw data to be averaged and utilised in the work factor calculation. Each scan produced

different elements of information disclosure which were classified into the following categories:

System Information, Timestamp, HTTP Calls, and Scans Performed (Table 6). Two measurements

of HTTP Calls were identified in the test data: HTTP Actual %, which measured the positive ratio

of discovered HTTP calls to all HTTP calls present in the application or API, and HTTP Scan %,

which measured the positive ratio of discovered HTTP calls to all HTTP calls scanned during data

collection. Both were included as HTTP variables to best represent disclosed information during

AR.

Table 6: Work Factor Variables for Active Reconnaissance

System
Information

Time Factor HTTP Calls Attack Surface Scans

Scope

Server, port,
URI, plugin,
and
application-
specific
information

Timestamp
generation
during
scanning
activities –
total scan time

Required calls
for scanning, and
discovered calls
in applications

Uncovered
endpoints and
schema
extraction,
depending on the
application

Automated
scanning tools
for network and
application
reconnaissance

Positive
Work
Factor

Maximum
amount of
information
divulged

Minimum
amount of time
elapsed from
start to finish
of scanning
activities

Maximum ratio
of discovered
calls to required
calls

Maximum ratio
of existing
endpoints/
schema and
discovered
endpoints/
schema

Minimum
amount of scans
required to
uncover desired
information

TOPSIS-AHP was used to compute two work factor ideals: the positive, or advantageous,

work factor (+Work Factor) which represents the ideal best use of time for a malicious actor, and

the negative, or non-advantageous, work factor (-Work Factor) which represents the ideal worst

use of time for a malicious actor. TOPSIS weights were decided based on perceived importance of

44

the data disclosed using the AHP Approximate Eigenvector Method (Leal, 2020; SpiceLogic,

2022), which was performed in LibreOffice by spreadsheet calculation (Figure 17). This calcula-

tion ranked independent variables by factors of 1, 3, 5, 7, and 9 in terms of absolute importance,

with 1 being most important and 9 being least important. Rankings of 2, 4, 6, and 8 were permitted

for in-between values and were utilised for some variables. To calculate the TOPSIS score, the

timestamp variables were converted to total minutes. A table containing the average of each metric

was constructed, with the exception of HTTP Actual %, HTTP Scan %, and Attack Surface which

reflected the highest percentile result among the output data. The remaining steps of the equation

were carried out in a series of LibreOffice spreadsheet equations (Figure 18) adapted from a lecture

by Manoj Mathew (2018).

45

Figure 17: AHP Spreadsheet Calculations

Figure 18: TOPSIS Spreadsheet Calculations

Firstly, the normalised matrix of all data was calculated, and then the weighted normalised

matrix was likewise calculated using the weighted averages resulting from the AHP calculations.

Once the weighted normalised matrix was found, calculations for the ideal best and ideal worst

scores for each variable category were performed. These results were then taken along with the

weighted normalised matrix results and used to find, firstly, the Euclidean distance of a weighted

datum from the corresponding ideal best score, which was then squared and summed along with

the other data instances. The same was repeated for the Euclidean distance between a weighted da-

tum and its corresponding ideal worst score. The results of the Euclidean ideal best and Euclidean

ideal worst were then used to calculate the final performance score of the dependent variable, thus

producing a final work factor (both a +Work Factor and -Work Factor) metric.

Additionally, chi-square calculations were performed between the +/-Work Factor scores

and independent security variables to measure possible correlation. To assess the possible validity

of the work factor metric, the test statistics for both +Work Factor and -Work Factor were sub-

tracted from their respective p-values to compare the distance between them. The strongest correla-

tion metric from each pair was subsequently used as an AHP weight comparator. Secondly, to

demonstrate the viability of work factor as a security metric, the same test statistic results were

compared against visualised trends present among the security variables. This was done to deter-

mine possible statistical significance in the absence of a traditional p-value measure, such as a t-

Test, which was out of scope for the study.

6. Data & Results

6.1 Raw Data Results

 System Information was revealed in the initial Nmap (n.d.) scan for all three targets (Fig-

ures 19, 22, & 25), while the Dirsearch (Soria, 2022) scans resulted in HTTP method disclosure

46

for all three targets, and endpoint disclosure for VRMA and REST API targets but not for the

GraphQL API target (Figures 20 23, & 26). GraphQL Dirsearch scans terminated after successful

completion of HTTP GET and POST method scans, which shortened the runtime compared to the

VRMA and REST API targets (see Table 7). The Dirsearch (Soria, 2022) scan CLI commands

Table 7: Averaged Active Reconnaissance Output

Target System
Information

Timestamp HTTP
Actual %

HTTP Scan
%

Attack
Surface

Scans
Performed

VRMA 6 00:36:16.87 33.00% 25.00% 47.37% 3

REST 7 01:14:18.54 100.00% 80.00% 100.00% 3

GraphQL 10 00:11:12.09 100.00% 100.00% 0.00% 5

 were the most technically complex, differing between the VRMA and APIs based on the data dis-

closed in the initial Nmap (Nmap, n.d.) scan. For content discovery of the VRMA and REST API

targets, Dirsearch with JWT authentication was run, disclosing additional endpoints for the REST

API target but not for the VRMA target (Figures 21 & 24). This was the final scan performed for

either of these targets. Introspection verification and server fingerprinting were carried out against

the GraphQL API target using Nmap (Nmap, n.d.; Figure 27) and Graphw00f (Farhi, 2024; Figure

28), respectively, which resulted in additional System Information disclosures. Schema extraction

was attempted with the Clairvoyance (Stupin, 2023) tool, but was unsuccessful (Figure 29).

47

Figure 19: VRMA – Nmap Output

48

Figure 21: VRMA – Authenticated Dirsearch Output (HTTP GET)

Figure 23: REST API – Initial Dirsearch Output (HTTP PUT)

Figure 24: REST API – Authenticated Dirsearch Output (HTTP PUT)

Figure 20: VRMA – Initial Dirsearch Output (HTTP GET)

Figure 22: REST API – Nmap Output

The BASH automation code was designed to produce 50 output iterations (Appendix X),

the average of which can be seen in Table 7. These averages represent the raw data which were

collected during active reconnaissance, and consist of the independent variables used to calculate

the work factor metric with TOPSIS-AHP. The GraphQL API target had the highest rate of System

Information disclosure, as well as 100% disclosure among scanned and actual HTTP method calls.

49

Figure 28: GraphQL API – Clairvoyance Output

Figure 25: GraphQL – Nmap Output (Initial)

Figure 29: GraphQL – Graphw00f Output

Figure 27: GraphQL – Nmap Output (Introspection)

Figure 26: GraphQL – Dirsearch (HTTP POST)

GraphQL had the shortest Timestamp, the lowest rate of Attack Surface disclosure, and the highest

count of Scans Performed. The REST API had the longest Timestamp despite having a lower Scans

Performed count. REST Attack Surface disclosure was 100% along with 100% disclosure of HTTP

Actual %. The VRMA overall showed middling results, but had the lowest count of System Infor-

mation disclosure along with the lowest HTTP Actual % and HTTP Scan % disclosure rates.

6.2 TOPSIS with AHP Results

The AHP calculation (Figure 30) in this study ranked Timestamp and Attack Surface vari-

ables as 1, or most important, as the correlation between these two variables should have the

50

Figure 31: TOPSIS Calculation Results

 Figure 30: AHP of Independent Variables

strongest impact on +Work Factor and -Work Factor scores. System Info, HTTP Scan %, and Scans

Performed were rated as 3 – moderately important for the work factor metric, but not as much so

as the former variables. HTTP Actual % was rated the lowest score of 5, or neutral, as, though it is

a valuable measurement for work factor performance, it is predicated on the HTTP Scan % results:

the former cannot be found without the latter. These rankings were then normalised to produce in-

dividual weighted averages to be applied during the TOPSIS calculation (Figure 31).

The results for +Work Factor and -Work Factor measurements present complementary in-

versions of each other: the GraphQL API target had the highest +Work Factor score at 0.9619 and

lowest -Work Factor score at 0.0381. VRMA was second in terms of work factor, with a +Work

Factor score of 0.5847 and a -Work Factor score of 0.4153. The REST API target had the lowest

+Work Factor score at 0.0025, with a -Work Factor score of 0.9975. These findings clearly demon-

strate a difference in work factor measurement, thus allowing a rejection of the null hypothesis.

Table 8: TOPSIS with AHP Results

+Work Factor -Work Factor

Target Pi Rank Target Pi Rank

GraphQL API 0.96185414 1 REST API 0.99745128 1

VRMA 0.58472864 2 VRMA 0.41527136 2

REST API 0.00254872 3 GraphQL API 0.03814586 3

6.3 Variable Correlation Results

In addition to measuring the work factor metric of the above artefacts, a chi-square analysis

was conducted between each active reconnaissance variable and -/+Work Factor to measure possi-

ble correlation. +Work Factor correlations were found among System Information and Scans Per-

formed variables (Tables 9 & 14), while -Work Factor correlations were found among Timestamp

51

and Attack Surface variables (Tables 10 & 13). No correlations were found between either work

factor variable and HTTP Scan % or HTTP Actual % (Tables 11 & 12). This was done to assess the

validity of the AHP category weights and demonstrate the viability of work factor as a security

metric.

As a representation of validity, the strength of the correlation between -/+Work Factor and

the security variables can be observed to coincide with the ranking strength employed between the

AHP category weights, with the exception of HTTP Scan %. Alongside the highest AHP rank, At-

tack Surface and Timestamp have the most significant correlative p-value distances: Attack Surface

with a +Work Factor p-value distance of 1.591 and Timestamp with a +Work Factor p-value dis-

tance of 5.268, respectively. System Information, and Scans Performed showed middling p-value

tances, with a -Work Factor distance of 0.612 and 0.738, respectively, which mirrors their likewise

Table 9: Chi Square – System Information

System Information / -Work Factor System Information / +Work Factor

Alpha 0.001 Alpha 0.001

df 2 df 2

P-value 0.5569480708434080 P-value 0.7216752573662290

Test Statistic 1.1705665469693900 Test Statistic 0.6523600466256560

Critical Value 13.8155105579643000 Critical Value 13.8155105579643000

p-Value dist. 0.6136184761259820 p-Value dist. -0.0693152107405728

Table 10: Chi-Square – Timestamp

Timestamp / -Work Factor Timestamp / +Work Factor

Alpha 0.001 Alpha 0.001

df 2 df 2

P-value 0.9599647519379040 P-value 0.0693362049264179

Test Statistic 0.0817174238513610 Test Statistic 5.3375761431972900

Critical Value 13.8155105579643000 Critical Value 13.8155105579643000

p-Value dist. -0.8782473280865430 p-Value dist. 5.2682399382708800

52

Table 11: Chi-Square – HTTP Actual %

HTTP Actual % / -Work Factor HTTP Actual % / +Work Factor

Alpha 0.001 Alpha 0.001

df 2 df 2

p-Value 0.6920057147431310 p-Value 0.6233893634150210

Test Statistic 0.7363221301984910 Test Statistic 0.9451679480194000

Critical Value 13.8155105579643000 Critical Value 13.8155105579643000

p-Value dist. 0.0443164154553601 p-Value dist. 0.3217785846043790

Table 12: Chi-Square – HTTP Scan %

HTTP Scan % / -Work Factor HTTP Scan % / +Work Factor

Alpha 0.001 Alpha 0.001

df 2 df 2

p-Value 0.6449804036785660 p-Value 0.6457808474820470

Test Statistic 0.8770706890832000 Test Statistic 0.8745901562801920

Critical Value 13.8155105579643000 Critical Value 13.8155105579643000

p-Value dist. 0.2320902854046340 p-Value dist. 0.2288093087981440

Table 13: Chi-Square – Attack Surface

Attack Surface / -Work Factor Attack Surface / +Work Factor

Alpha 0.001 Alpha 0.001

df 2 df 2

p-Value 0.9793101800377830 p-Value 0.3743324058314090

Test Statistic 0.0418137061812121 Test Statistic 1.9652221813164300

Critical Value 13.8155105579643000 Critical Value 13.8155105579643000

p-Value dist. -0.9374964738565710 p-Value dist. 1.5908897754850200

Table 14: Chi-Square – Scans Performed

Scans Performed / -Work Factor Scans Performed / +Work Factor

Alpha 0.001 Alpha 0.001

df 2 df 2

p-Value 0.5303024945146140 p-Value 0.7602219518757960

Test Statistic 1.2686153817627900 Test Statistic 0.5482896927917420

Critical Value 13.8155105579643000 Critical Value 13.8155105579643000

p-Value dist. 0.7383128872481730 p-Value dist. -0.2119322590840530

53

54

Figure 32: Trend – System Information Figure 33: Trend – Timestamp

Figure 34: Trend – HTTP Actual % Figure 35: Trend – HTTP Scan %

Figure 36: Trend – Attack Surface Figure 37: Trend – Scans Performed

middling AHP rank. Finally, Actual Scan % shows the weakest correlation with a -Work Factor p-

value distance of 0.322 (test statistic 0.945), which reflects its position as the lowest ranked AHP

category weight. An exception is found in the HTTP Scan % correlation results, which, like HTTP

Actual %, revealed a weak +Work Factor p-value distance of 0.229 (test statistic: 0.875). This sug-

gests that the AHP category rank of three may have been too generous, with five seeming more ap-

propriate.

Concerning demonstrable viability of the work factor metric, the chi-square results likewise

appear to reflect trends found in the visualisation of the relationship between the -/+Work Factor

and independent security variable averages (Figures 32 – 37). Comparing the strength of the chi-

square p-value distances with the slope of the plotted line of the independent security variables

demonstrates this most accurately. Attack Surface and Timestamp variables have near-linear slopes

on their respective graphs, with p-value distances of -0.937/1.591 and -.878/5.268, respectively.

System Information shows a lesser correlation between -/+Work Factor p-value distances

(0.613/-0.693), which corresponds with the dichotomous slope incline for both +Work Factor and

-Work Factor. Similar trends can be observed between the chi-square results for -/+Work Factor p-

value distances and Scans Performed (0.738/-0.212). HTTP Scan % (0.232/0.229) and HTTP Ac-

tual % (0.044/0.322) again show no relationship to either +/-Work Factor, which suggests that the

current work factor metric may not be viable for these variables.

7. Analysis & Discussion

7.1 Results Analysis

RQ 1. Results of the work factor demonstration have produced a few interesting findings:

firstly, that work factor as a metric can be quantified and applied to other security variables for

55

comparison. While the studies surveyed above, notably Fulton et al. (2020), made use of calculat-

ing the steps and degree of difficulty involved in executing specific exploits, those studies stopped

short of calculating a composite work factor ranking as a novel metric. This study appears to be the

first to modify the calculation of work factor as conceptualised by Saltzer and Schroeder into a sin-

gular metric for computer security. Extending this type of raw data into a composite metric allows

additional comparative measures to be conducted between work factor and other security variables,

as has been demonstrated with the chi-square calculations.

At the same time, while Attack Surface, System Information, Timestamp, and Scans Per-

formed variables proved correlative to the assigned AHP weights and overall work factor metric,

HTTP Scan % and HTTP Actual % produced disparate results. This lack of demonstrated viability

for these variables suggests two findings: firstly, they were not properly quantified. It appears that

use of a percentile as the comparative metric did not account for the differing HTTP method call

requirements among the artefacts during scanning. This suggests a more robust quantification is re-

quired for these variable calculations, or, if not possible, that the metric should most likely be ex-

cluded from measurement. Secondly, as these variables were static in nature, without a true zero, it

may be that work factor is best quantified with dynamic variables that contain a true zero, to which

all of the correlative variables in this study can be included.

Additionally, the HTTP Scan % variable was found to most likely be overweighted, though

the assigned weight and the valid weight were not significantly disparate. It can thus be assumed

any negative impact on the validity of the overall work factor metric calculation to be negligible in

this regard, though still present. The above findings demonstrate that the correlative relationship

between work factor and corresponding security variables can indeed be spurious, thereby provid-

ing some support to the notion that those which are not spurious can thus be considered valid. That

said, correlative discrepancies would impact the overall validity of the work factor metric depend-

56

ing on its severity. Yet, given the relative insignificance of the HTTP Scan % weight when com-

pared to Timestamp or Attack Surface variables, and the overall positive demonstration of correla-

tion between work factor and the viable security variables, the quantification and weighting errors

found in the HTTP Scan % variable do not disprove the viability of the work factor metric as a

whole.

RQ2. Among the architectures themselves, the work factor variation between VRMA,

REST, and GraphQL reflects interesting divergences during active reconnaissance. The GraphQL

+Work Factor is significantly higher than both the VRMA and REST API, with a distance of .377

and .959, respectively. Indeed, among the artefacts tested, GraphQL had the most advantageous

work factor for malicious actors, while REST had the least and VRMA was middling. While the

REST API artefact divulged 100% of its attack surface and the GraphQL API divulged 0%, the

amount of time in which it took to do so (74.185 minutes versus 11.121 minutes, respectively) ap-

pears to have had the predominant influence on the work factor calculations, even with identically

weighted Timestamp and Attack Surface variables.

Time as the dominant variable of the work factor metric is further reflected in the chi-

square calculations, which demonstrated strong correlations between, firstly, +Work Factor and

Timestamp and, secondly, -Work Factor and Attack Surface. This appears to be the novel contribu-

tion of the work factor metric as a security analytic, as it is not comparing how much time an at-

tack sequence takes to execute but rather the quality of the relationship a time measurement has to

important security variables within an attack sequence. As a result, an attacker or developer can be

informed about how the idiosyncrasies of a target architecture can affect the quality of an attack se-

quence. A primary example from the data is the strongly inverted relationship between the Time-

stamp and Attack Surface variables. While this finding could be assumed to apply to any

Timestamp/Attack Surface comparison, the extreme disparity has most likely resulted from an ar-

57

chitectural quirk in the GraphQL artefact rather than a naturally inverse relationship.

While REST APIs and VRMAs run endpoints along HTTP method calls, GraphQL does so

through schema queries and various resolver functions, as discussed above. Additionally, GraphQL

APIs provide an automatic IDE sandbox to test schema endpoints on a browser, offering field sug-

gestions when query errors are encountered (Aleks & Farhi, 2023). The artefact in this study was

no exception: manually entering warped queries into the IDE resulted in automated field sugges-

tions (Figure 38). What this artefact lacked was code instructing the use of introspection; it was

simply not included in the course material. The absence of introspection functionality is reflected

in the Nmap (Introspection) scan (Figure 27), as it returns network information with nothing else.

No mention of introspection application is presented.

 But the Clairvoyance output (Figure 29) attained during schema extraction reveals some-

thing of more novel interest. This data suggests that, though field suggestions are functional on the

GraphQL IDE, they are not fully implemented on the endpoint and thus the brute-forcing scan can-

not be completed. No literature studies on the subject of GraphQL field suggestions were found to

support or extrapolate this finding, so the prevalence and definitive cause of this result cannot yet

be determined. That said, it appears the absence of introspection code in the artefact resulted in the

field suggestion function not being fully implemented on the endpoint. The result, a highly advan-

tageous Timestamp average alongside a highly disadvantageous Attack Surface average, may im-

pact the likelihood of further exploitation, depending on the motivations of the attacker.

It should be noted, though, that such a result for most GraphQL applications in the wild

would be unlikely, given the appearance of introspection use among commercial and open source

schemas (Baudart et al., 2019) and production-grade server configurations (Schwartzmuller, 2019).

The ability to reverse engineer GraphQL endpoints through schema extraction in those instances

58

may produce a work factor that more closely resembles the REST API or VRMA work factor re-

sults. More testing of GraphQL applications with various implementations of introspection would

need to be conducted to better understand the effect of introspection absence on the work factor

metric. That said, it may be advantageous for GraphQL developers to use a field suggestion obfus-

cation tool to possibly generate the same result, as such would greatly increase the subsequent

work factor of required manual testing.

A second example can be found in the work factor metric for the REST API artefact. Its sig-

nificantly low +Work Factor score appears to be the result of more comprehensive scanning re-

quirements compared to the VRMA and GraphQL targets. Because the initial Nmap (Nmap, n.d.)

scan identified the VRMA as a Node.js Expressware application, a five-method HTTP call scan cy-

cle with additional subdirectories including /api as a prefix were not necessary, which shortened

the Timestamp output. The REST API was identified alongside five HTTP method calls, which

made their inclusion mandatory. While the GraphQL API was also identified alongside five HTTP

method calls, the ‘GraphQL tripwire’ terminated before running through all five HTTP methods

which lowered its overall Timestamp output.

Additionally, because of the middleware configuration, all of the VRMA Attack Surface

59

Figure 38: GraphQL IDE – Field Suggestion

output occurred during the initial GET scans, while the REST Attack Surface output was scattered

across four of the five HTTP method calls, a practice known as HTTP Interaction Design (Massé,

2011). Although not reflected in this study, an impatient malicious actor could choose to terminate

the VRMA scan cycle prematurely to begin further exploitation on the immediate results. This is

not an option with the REST Attack Surface output. As malicious actors must wait longer for REST

API endpoint exposure, this may discourage thorough scanning. At the same time, the prospect of

total Attack Surface disclosure may prove the outsized work factor requirement acceptable for

some attackers and attack vectors.

The influence of the work factor metric seems to ultimately depend on the motivations of

the malicious actor, which would be contingent on the actor’s skill level, desired attack vector, de-

sired outcome, and interest in the target. But from a work factor perspective, these two examples

seem to demonstrate that API design idiosyncrasies can impact the security of an application by

making it prohibitively obtuse or time-consuming to scan comprehensively. It appears advisable

for developers and security professionals to be aware of the effect work factor may have on the at-

tack desirability of a target at the design level, as this may provide an additional layer of security

against malicious action.

7.2 Study Limitations

While this study does successfully demonstrate the arrangement, calculation, and further

manipulation of a work factor security metric, the generalisability of the metric results across web

application architectures is limited due, firstly, to the validity of the TOPSIS-AHP calculations of

Scan HTTP % and, secondly, to the small sample size of artefacts the work factor metric was as-

sembled against: a single VRMA, REST API, and GraphQL API. The small sample size was due to

the requirements, scope, and time limitations of the dissertation, and while the results do show a

60

demonstrable difference in the work factor metrics of each artefact, these cannot be extended to

other applications as a rule.

Three areas for improved generalisability exist. Firstly, security variable calculations should

be tested to prove validity in relation to the target measurement of the work factor metric before

TOPSIS-AHP is performed. This would reduce the chance of a spurious relationship between vari-

ables, as was found between the percentile HTTP Scan % and HTTP Actual % variables and the

work factor metric. Secondly, given the subjective nature of AHP weighting, it may be judicious to

calculate these weights from an averaged sample based on informed industry opinion. Though this

study’s results found mostly valid weight measurements via the chi-square results, as the weights

were subject to the author’s sole opinion, an opposite finding could have just as easily occurred.

Thirdly, target testing should be significantly larger and more diverse, especially when considering

the possible variation across REST API architectures and GraphQL field suggestion implementa-

tions, in order to better generalise differences in their respective results.

Though the results of the work factor metric are not currently generalisable, several mea-

sures were taken to design the metric to be reproducible by limiting other threats to validity: firstly,

the risk of construct validity was reduced by declaring each dependent and independent variable in

the study, as well as how each would be measured according to their use. This was done to min-

imise inadequate pre-operational explication of constructs and mono-method bias. Expanding the

variables which comprise the work factor metric to include the entirety of the active reconnais-

sance output was done to reduce the risk of confounding constructs and level of constructs. All

artefact code and active reconnaissance scripts were tested independently before deployment to re-

duce any possible internal validity threat.

Additionally, the artefact code was selected from an online course to reduce the risk of in -

61

valid instrumentation, selection, and ambiguity about the direction of causal influence. This code

was likewise chosen to limit possible risks to external validity, as adherence to course content

demonstrating a wide range of techniques meant for professional application production was more

likely to adhere to industry standards than original, unverified artefact code. All of this was done to

ensure researchers would have the ability to expand on the work factor metric in possible future re-

search.

7.3 Knowledge Gained

Several theoretical and technical skills were gained over the course of study:

Time management. A six-month timeframe for a dissertation is deceptively short. From the outset

it was clear that though 28 weeks were available to develop and execute the written project, a very

strict schedule for reading, artefact production, hypothesis testing, and writing was required to

meet the deadline while still producing quality output. Procrastination is an easy bedfellow, so

weekly written updates (Appendix XI) were dispatched to create a sense of accomplishment with

each completed task alongside accountability for any missed or late updates as to not fall too far

behind. This proved to be an instrumental motivating factor during the arduous portions of the

project.

Criticality. Employing criticality within the literature review was a daunting task, as this

skill had been a source of difficulty in past modules. While the logic of comparing and contrasting

different references became clear after engagement with Bloom’s Taxonomy (1956; Appendix

XII), the creative aspect of criticality, whereby one is able to see beyond the criticism and form a

complementary extension of thought, remained elusive. But inspiration struck in an unlikely find-

ing by Bogner & Kotstein (2021), in which developers found no security benefits present among

REST API architectural best practice. This opened a floodgate of investigation, which then ex-

62

panded into GraphQL literature, Saltzer and Schroeder (1975), and finally the work factor metric

itself.

Artefact Assembly. As the author’s technical knowledge was limited at the beginning of

the project, the need to rely on a comprehensive coding course to produce valid artefacts became

apparent once the literature review was finished and the project outline was written. Time manage-

ment was instrumental while finishing the VRMA and API source code artefacts. Frequent code

examples would prove broken or deprecated, requiring sometimes prohibitively advanced mitiga-

tion attempts relative to the coding skills of the author. If a record of completion had not been kept

from the outset, the building of the three web application artefacts would very likely have been

abandoned for a smaller project. But because the author felt beholden to providing quality weekly

updates, these provided the perseverance required to finish the artefacts as originally conceived.

Metric Conceptualisation. Previous knowledge of the hacker mindset played a pivotal role

in choosing work factor as a viable security metric and its quantification as a composite metric.

While very few formal studies will include patience as an elite hacking skill, those in the know

know that very few hackers will wait endlessly for an exploit to pay off. Attacks are often quick

and dirty, not only because of the motivations of the actor but because there is substantial risk in-

crease when one sustains long-term exposure to a target. Similarly, useful data and disclosures

must come along the way for an exploit to be beneficial – thus requiring work factor to be a com-

posite score rather than a simple timestamp metric. Having this prerequisite understanding resulted

in the logical conclusion that components making up the composite work factor should measure

the benefits of patience for a particular attack on a particular target as well as the timestamp associ-

ated. The difficulty lay in validating and verifying the quality of such a metric, and for this the sta-

tistics instruction encountered on the research methods course (Outram, 2023) was truly

invaluable, as the author was ultimately able to find a reasonable p-value statistic off which to base

63

metric validity through chi-square analysis. Use of this statistic as a validation measure is arguably

the hinge on which the validity of the entire study rests.

8. Conclusion

Though API architectures are among the most vulnerable technologies to cyber attack,

quantifying independent security variables to measure the possible security effects of architectural

idiosyncrasies has proven difficult. This study has attempted to bridge this gap by demonstrating

the viability of work factor as a security metric through its application to the results of an auto-

mated active reconnaissance cycle of a traditional views-rendering middleware application, REST

API, and GraphQL API. To accomplish the above, information disclosures gathered during active

reconnaissance were categorised as independent security variables, averaged, and weighted using

TOPSIS-AHP to calculate a composite work factor metric.

A chi-square analysis was conducted to assess the validity of the metric and the viability of

the ranked results as a comparative measure against other security variables. Firstly, the chi-square

tests were able to validate all variables with dynamic output and a true zero quantified by TOPSIS-

AHP, which lends credibility to the metric results but does not prove the definitive validity of the

quantification as currently conceived. Furthermore, while a correlative relationship was demon-

strated among the validated security variables, of particular interest was the strong correlation

found between disadvantageous (negative) work factor and the rate of Attack Surface disclosure.

GraphQL was shown to have the highest ranked positive work factor (0.9619) alongside the

least Attack Surface disclosure (0%), REST having the lowest rank (0.0025) alongside the highest

Attack Surface disclosure (100%), and the views-rendering middleware placing in the middle for

both measures (0.4153 and 47.37%). The extreme difference between these work factor metric

findings is most likely due to coding decisions which led to the GraphQL field suggestion feature

64

not being fully enabled on the endpoint of the artefact itself, along with inherent REST API archi-

tectural idiosyncrasies requiring a wider scope of reconnaissance. That said, given the limited

scope of data in the study, these findings are not currently generalisable. Further extrapolation of

the apparent inverse relationship between work factor and Attack Surface is needed to better in-

form researchers and developers about the likelihood of certain attack vectors on certain technolo-

gies and actor motivations.

API security is often ignored at the architectural level, leaving much of the security han-

dling to validation, authentication, and authorisation layers. The work factor metric demonstration

in this study suggests this practice may be shortsighted when certain aspects of low-level, architec-

tural security could increase the overall work factor of a target. Increasing the work factor in this

way may deter impatient malicious actors from performing comprehensive testing of a target, or

from testing a target altogether. Failure to fully implement automated field suggestions on the

GraphQL endpoint serves as an example of this. While this missing feature did produce an advan-

tageous work factor score for automated active reconnaissance, it also resulted in 0% Attack Sur-

face disclosure which, conjecture would permit, would most likely lead to a higher work factor

requirement in subsequent manual testing.

Likewise, when comparing the work factor scores of the REST API and traditional views-

rendering middleware application, though the REST API had 100% Attack Surface disclosure, the

time involved to do so was more than twice the time it took to disclose nearly half of the traditional

middleware application attack surface. REST’s use of diverse HTTP methods for API calls appears

to be the primary reason for the disparity in the automated active reconnaissance work factor, as

this increased the scope of the API attack surface greatly. Malicious actors who do not wish to ex-

pend the time required for full attack surface disclosure may only partially scan HTTP method

calls, which would result in far less attack surface disclosure. These examples would seem to dis -

65

pel the notion that adherence to API architectural rules has no impact on security, at least from a

work factor perspective.

While the results of this study have successfully demonstrated the potential of work factor

as a security metric for computer security, the testing of the work factor metric against three sepa-

rate artefacts is not so statistically significant as to prove a generalisation which should be applied

to other architectures and technologies. Further studies could build upon the conceptualisation of

the work factor calculation as well as expand uses for the metric within security research. Perhaps

the most pertinent areas of further research are in generalisability: being able to widely apply the

work factor metric with reproducible AHP calculations, and comprehensive testing of the work fac-

tor metric on a statistically significant data set. It is also important to note that application of the

work factor metric in security research is not limited to APIs and active reconnaissance. Further

studies incorporating other attack vectors or target technologies, which could expand upon and ma-

ture the understanding of the work factor metric in terms of viable application and limitations, are

also possible.

66

9. Cited References

Acar, Y., et al. (2017) Comparing the Usability of Cryptographic APIs. In: IEEE Symposium on
Security and Privacy. IEEE: 154 – 171

Akamai (2024) Lurking in the Shadows: Attack Trends Shine Light on API Threats. SOTI, 10 (1): 1
– 33

Aleks, N. & Farhi, D. (2023) Black Hat GraphQL. No Starch Press. San Francisco, CA, USA.

Alliyu et al. (2017) Preliminary Analysis on REST API Style Guidelines. In: PLATEAU’17
Workshop on Evaluation and Usability of Programming Languages and Tools, 23 October, 2017,
Vancouver, CA: 1 – 9

Al-Rumain, A. & Pawar, J. D. (2023) API Security Challenges – Security Professionals Overview.
China Petroleum Processing and Petrochemical Technology, 23 (2): 3115 - 3135

Anthonysamy et al. (2020) Schrödinger’s Security: Opening the Box on App Developers’ Security
Rationale. In: ICSE ‘20, 23 – 29 May, 2020, Seoul, Republic of Korea. ACM: 149 - 160

Arcuri, A., Marculescu, B., & Zhang, M. (2022) On the Faults Found in REST APIs by Automated
Test Generation. ACM Transactions on Software Engineering and Methodology, 31 (3): 41:1 – 41:
43

Assal, H. & Chiasson, S. (2018) Security in the Software Development Lifecycle. In: 14th
Symposium on Usable Privacy and Security. USENIX: 281 – 296

Assetnote (2020) 2m-subdomains.txt | Manually Generated Wordlists. wordlists.assetnote.io
[available online] https://wordlists.assetnote.io/

Baez et al. (2016) REST APIs: A Large-Scale Analysis of Compliance with Principles and Best
Practices. ICWE 2016, LNCS 9671: 21 - 39

Bailey, M., Dittrich, D., & Kenneally, E. (2013) Applying Ethical Principles to Information and
Communication Technology Research: A Companion to the Menlo Report. US Department of
Homeland Security: 1 – 32

Balioti, V., Evangelides, C., & Tzimopoulos, C. (2018) Multi-Criteria Decision making Using
TOPSIS Method Under Fuzzy Environment. Application in Spillway Selection. MDPI, 2: 1 - 8

Ball, C. J. (2021) Hacking APIs: Breaking Web Application Programming Interfaces. No Starch
Press. San Francisco, CA, USA

Bansal, A. (2023) HGQL: Supporting Schematic Hypergraphs in GraphQL. In: IDEAS 2023, 05 –
07 May, 2023, Heraklion, Crete, Greece. ACM: 9 – 16

Bastidas, E. et al. (2022) Quality in Use Evaluation of a GraphQL Implementation. In: CIT 2021,
LNNS 405. Springer Nature: 15 – 27

Baudart, G et al. (2019) An Empirical Study of GraphQL Schemas. In: ICSOC 2019, LNCS 11895:
3 – 19

Baudart, G. et al. (2021) Learning GraphQL Query Cost. In: 36th IEEE/ACM International
Conference on Automated Software Engineering. IEEE: 1146 – 1150

67

Bernardino, J., Laranjeiro, N., & Neumann, A. (2021) An Analysis of Public REST Web Service
APIs. IEEE Transactions on Services Computing, 14 (4): 957 - 970

Bloch, J. (2006) How to Design a Good API and Why it Matters. In: 21st ACM SIGPLAN
Symposium on Object-Oriented Programming Systems, Languages, and Applications. ACM: 506 –
507

Bloom, B. S. et al. (1956) Taxonomy of Educational Objectives: The Classification of Educational
Goals. Handbook 1: Cognitive Domain. Longmans. London, WI, USA.

Bogner, J. & Kotstein, S. (2021) Which RESTful API Design Rules Are Important and How Do
They Improve Software Quality? A Delphi Study with Industry Experts. Springer Nature.
SummerSOC 2021, CCIS 1429: 154 – 173

Bogner, J., Kotstein, S., & Pfaff, T. (2023) Do RESTful Design Rules have an Impact on the
Understandability of Web APIs? Empirical Software Engineering, 28:132: 1 - 35

Borroel, E. Z. et al. (2023) CODAS, TOPSIS, and AHP methods Application for Machine Selection.
Journal of Computational and Cognitive Engineering, 2 (4):322 - 330

Brito, G., Momach, T., & Valente, M. T. (2019) Migrating to GraphQL: A Practical Assessment. In:
SANER 2019, Hangzhou, China. IEEE: 140 – 150

Buna, S. (2021) GraphQL in Action. Manning. Shelter Island, NY, USA.

Chng et al (2022) (2018) Hacker Types, Motivations, and Strategies: A Comprehensive Framework.
Computers in Human Behavior Reports, 5: 1 – 8

Chowdhury, P. D., Tahaei, M., & Rashid, A. (2022) Better Call Saltzer & Schroeder: A
Retrospective Security Analysis of SolarWinds & Log4j. ArXiv: 1 -8

Cito & Happa (2023) Understanding Hackers’ Work: An Empirical Study of Offensive Security
Practitioners. ESEC/FSE ‘23, 3 – 9 December, 2023, San Francisco, CA, USA. ACM: 1669 - 1680

Cokrowibowo, S., Firgiawan, W., & Zulkarnaim, N. (2020) A Comparative Study using SAW,
TOPSIS, SAW-AHP, and TOPSIS-AHP for Tuition Fee (UKT). In: The 3rd EPI International
Conference on Science and Engineering 2019. IOP: 1 – 5

Consens, M. P., Hartig, O., & Kin, Y. W. (2019) An Empirical Anslysis of GraphQL API Schemas in
Open Code Respositories and Package Registeries. In: AMW, 3 June 2019: 1 – 5

Diaz, T., Olmedo, F., & Tanter, E. (2020) A Mechanized Formalization of GraphQL. In: CPP ‘20, 20
– 21 January, New Orleans, LA, USA. ACM: 201 - 214

Dimitrovski, I., Kitanovski, I., & Spasev, V. (2020) An Overview of GraphQL: Core Features and
Architecture. Ukim.mk: 1 – 14 [Available Online]
https://repository.ukim.mk/bitstream/20.500.12188/19669/1/ICT_2020_submission_40.pdf

Doolittle, J. (2023) APIs with GraphQL. IEEE Software: 118 – 120

Downey, A. B. (2014) Think Stats: Exploratory Data Analysis. O’Reilly. Sebastapol, CA, USA.

Dwyer, A. C., et al. (2023) SLR: From Saltzer and Schroeder to 2021...47 Years of Research on the
Development and Validity of Security API Recommendations. ACM Transactions on Software
Engineering and Methodology, 32 (3): 60:1 – 60:31

68

Farhi, D. (2024) graphw00f | dolevf. github.com [Available online]
https://github.com/dolevf/graphw00f

Fernandez, P. et al. (2023) GraphQL: A Systematic Mapping Study. ACM Computing Surveys, 55
(10): 202:1 – 202:35

Fielding, R. T. (2000) Architectural Styles and the Design of Network-based Software Architecture.
Doctoral thesis.

Fowler, M. (2010) Richardson Maturity Model: Steps Toward the Glory of REST | Articles.
martinfowler.com. [Available Online]
https://martinfowler.com/articles/richardsonMaturityModel.html

Friedrich, T. (2013) RESTful Service Best Practices: Recommendations for Creating Web Services.
RestApiTutorial.com [Available Online]
https://raw.githubusercontent.com/tfredrich/RestApiTutorial.com/master/media/RESTful%20Best
%20Practices-v1_2.pdf

Fulton, K. R., et al. (2020) Understanding Security Mistakes Developers Make: Qualitative
Analysis from Build It, Break It, Fix It. In: 29th USENIX Security Symposium. USENIX: 1 – 18

GraphQL (2021) GraphQL: October 2021 Edition. [Available Online]
https://spec.graphql.org/October2021/

Green, M. & Smith, M. (2016) Developers are Not the Enemy!: The Need for Useable Security
APIs. IEEE Secure Privacy, 14 (5): 40 – 46

Guéhéneuc, Y-G., et al. (2016) Are REST APIs for Cloud Computing Well Designed? An
Exploratory Study. In: ICSOC 2016, LNCS 9936. Springer: 157 – 170

Gutman, P. (2002) Lessons Learned in Implementing and Deploying Crypto Software. In: Usenix
Security Symposium. USENIX: 315 – 325

Hallett, J., Rashid, A, & Patnik, N. (2019) Usability Smells: An Analysis of Developers’ Struggle
with Crypto Libraries. In: 15th Symposium on Usable Privacy and Security. USENIX: 245 – 257

Hartig, O. & Pérez, J. (2018) Semantics and Complexity of GraphQL. In: WWW 2018, 23 – 27
April, 2018, Lyon, FR. ACM: 1155 – 1164

Hu et al. (2018) Hackers vs Testers: A Comparison of Software Vulnerability Discovery Process. In:
2018 IEEE Symposium on Security and Privacy. IEEE: 374 - 391

Lawi, A., Panggabean, B. L. E., & Yoshida, T. (2021) Evaluating GraphQL and REST API Services
Performance in a Massive and Intensive Accessible Information System. Computers, 10 (138): 1 –
16

Leal, J. E. (2020) AHP-Express: A Simplified Version of the Analytical Hierarchy Process Method.
MethodsX 7: 1 - 11

Massé, M. (2011) REST API Design Rulebook. O'Reilly. Sebastapol, CA, USA

Mathew, M. (2018) TOPSIS Using Excel – MCDM Problem | Manoj Mathew. youtube.com
[Available online] https://www.youtube.com/watch?v=Br1NQK0Iumg

Meshram, S. U. (2021) Evolution of Modern Web Services -- REST API with its Architecture and
Design. International Journal of Research in Engineering, Science, and Management, 4 (7): 83 – 86

69

Munsch & Munsch (2021) The Future of API (Application Programming Interface) Security: The
Adoption of APIs for Digital Communications and the Implications for Cyber Security
Vulnerabilities. Journal of International Technology and Information Management, 29 (3): 25 - 45

Myers, B. A. & Stylos, J. (2016) Improving API Usability. Communications ACM, 59 (6): 62 – 69

Nmap (n.d) Chapter 15. Nmap Reference Guide | Nmap Network Scanning. nmap.org [Available
online] https://nmap.org/book/man.html

OpenAI ChatGPT (2024). Various ChatGPT responses to Laura M. Saxton. 6 July – 1 August 2024.

Outram, K. (2023) ‘Unit 8: Inferential Statistics’, Research Methods and Professional Practice June
2023, University of Essex [Available Online] https://www.my-course.co.uk/course/view.php?
id=10163§ion=14

OWASP (2023) OWASP Top 10 API Security Risks – 2023. OWASP API Security Project.
[Available Online] https://owasp.org/API-Security/editions/2023/en/0x11-t10/

OWASP (2024a) REST Security Cheat Sheet | OWASP Cheat Sheet Series.
cheatsheetseries.owasp.org [Available Online]
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html

OWASP (2024b) GraphQL Cheat Sheet | OWASP Cheat Sheet Series. cheatsheetseries.owasp.org
[Available Online] https://cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html

Palma, F., et al. (2014) Detection of REST Patterns and Antipatterns: A Heuristics-based Approach.
Service-Oriented Computing. Berlin, Heidelberg. Springer: 230 – 244

Palma, F, et al. (2017) Semantic Analysis of RESTful APIs for the Detection of Linguistic Patterns
and Antipatterns. International Journal of Cooperative Information Systems, 26 (02): 1742001

Palma, F, , Sadia, A., & Zarraa, O. (2021) Are Developers Equally Concerned About Making Their
APIs RESTful and the Linguistic Quality? A Study on Google APIs. In: Hacid H, et al. (eds.)
Service-Oriented Computing, Springer International Publishing, Cham, CH: 171 – 187

Palma, F. et al. (2022) Investigating the Linguistic Design Quality of Public, Partner, and Private
REST APIs. In: 2022 IEEE International Conference on Services Computing. IEEE: 20 – 30

Paxton-Fear, K. (2021) API Hacking 101, w/ Dr. Katie Paxton-Fear | Traceable AI. [Available
Online] https://www.youtube.com/watch?v=qC8NQFwVOR0

Postman (2024) Postman API Platform. postman.com [Available Online]
https://www.postman.com/

Qazi, F. A. (2023) Application Programming Interface (API) Security in Cloud Applications. EAI
Endorsed Transactions on Cloud Systems: 1 – 14

Raj, P. & Subramanian, H (2019) Hands on RESTful API Design Patterns and Best Practices. Packt
Publishing. Birmingham, UK.

Saltzer, J. H. & Schroeder, M. D. (1975) The Protection of Information in Computer Systems.
Proceedings of the IEEE, 63 (9): 1278 – 1308

Schwartzmüller, M. (2019) Node.js – The Complete Guide | Academind. Packt Publishing.
[Available Online] https://learning.oreilly.com/course/node-js-the/9781838826864/

70

Siriwardena, P. (2020) Advanced API Security: OAuth 2.0 and Beyond. 2nd Ed. New York, NY,
USA. Apress.

Soria, M. (2022) dirsearch | maurosoria. github.com [Available online]
https://github.com/maurosoria/dirsearch?tab=readme-ov-file

SpiceLogic Inc. (2022) AHP Calculation Methods | Tutorials. spicelogic.com [Available Online]
https://www.spicelogic.com/docs/ahpsoftware/intro/ahp-calculation-methods-396

Stupin, N. (2023) clairvoyance | nikitastupin. github.com [Available online]
https://github.com/nikitastupin/clairvoyance

71

10. Bibliography

Abeck, S. et al. (2016) Checklist for the API Design of Web Services Based on REST. International
Journal of Advances in Internet Technology, 9(3 & 4): 41 – 51

Afanasieva, A. M., & Tkachov, V. M. (2023) The Differences Between GraphQL and REST APIs:
Understanding their Development Lifecycles. Kharkov.ua: 21 [Available Online]
https://repository.kpi.kharkov.ua/server/api/core/bitstreams/88e08c47-08fe-4379-a290-
c9089f1696d4/content

Amundsen, M. (2022) RESTful Web API Patterns and Practices Cookbook. O’Reilly. Sabastapol,
CA, USA.

Arts, A. et al. (2021) Can GraphQL Replace REST? A Study of Their Efficiency and Viability. In:
IEEE/ACM 8th International Workshop on Software Engineering Research and Industrial Practice.
IEEE: 10 – 17

Atzori, M. et al. (2020) Special Issue on "Data Exploration in the Web 3.0 Age". Future Generation
Computer Systems., 112: 1177 -1179

Bahari, M. et al. (2020) Understanding Service-Oriented Architecture (SOA): A Systematic
Literature Review and Direction for Further Investigation. Information Systems, 91: 1 – 27

Balcer et al. (2008) Applied SOA: Service Oriented Architecture and Design Strategies. Wiley.
Indianapolis, IN, USA: 27 – 76

Basishtha et al. (2014) Web 1.0 to Web 3.0 - Evolution of the Web and its Various Challenges. In:
2014 International Conference on Reliability, Optimisation, and Information Technology, India, 6 -
8 Feb, 2014: 86 – 89

Bodden, E. et al. (2022) FUM – A Framework for API Usage Constraint and Misuse Classification.
In: IEEE International Conference on Software Analysis, Evolution, and Reengineering. IEEE: 673
– 684

Bosse et al. (2019) Internet of Things Middleware: How Suitable are Service-Oriented Architecture
and Resource-Oriented Architecture. In: Proceedings of the 3rd International Conference on
Internet of Things, Big Data, and Security. SCITEPRESS: 229 – 236

Brito, G. & Valente, M. T. (2020) REST vs. GraphQL: A Controlled Experiment. International
Conference on Software Architecture. IEEE: 81 – 91

Cabot, J., Izquierdo, J. K. C., & Rodriguez-Echeverria, R. (2018) Towards a UML and IFML
Mapping to GraphQL. In: ICWE 2017, LNCS 10544. Springer Nature: 149 – 155

Calibraint (2024) The Step-by-Step Guide for Roadmap to Web 3.0 Application in 2024 | Calibraint.
[Available Online] https://www.calibraint.com.au/blog/roadmap-to-web-3-applications

Chris, K. (2023) SOLID Design Principles in Software Development | freeCodeCamp.
freecodecamp.org. [Available Online] https://www.freecodecamp.org/news/solid-design-principles-
in-software-development/

Chou, W. et al. (2016) Design Patterns and Extensibility of REST API for Networking Applications.
IEEE Transactions on Network and Service Management, 13 (1): 154 – 167

72

Chowdhury et al., (2021) Developers are Neither Enemies Nor Users: They are Collaborators. In:
2021 IEEE Secure Development Conference (SecDev). IEEE: 47 - 55

Decker, S. et al. (2021) LISSIU: Integrating Semantic Web Concepts into SOA Framework. In:
Proceedings of the 23rd International Conference on Enterprise Information Systems, 1.
SCITEPRESS: 855 – 865

Duan, S. et al (2023) Analysis and Discussion of Resource-Oriented Service Architecture for Online
Programming Ecology. In: 26th ACIS International Winter Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE: 64 – 68

Dyyak, I., Marchuk, Y., Makar, I. (2023) Performance Analysis of Database Access: Comparison of
Direct Connection, ORM, REST API, and GraphQL Approaches. In: 13th International Conference
on Electronics and Information Technologies. IEEE: 174 – 176

Eskandarzadeh, A. (2023) The Future of Web 3: A Roadmap for the Decentralized Web. In: Kaur, G.
& Lekhi, P. (eds) Concepts, Technologies, Challenges, and the Future of the Web. IGI Global.
Hershey, PA, USA.

Flores-García, E., Heredia, J. S., & Solano, A. R. (2019) Comparative Analysis Between Standards
Oriented to Web Services: SOAP, REST, and GraphQL. In: Botto-Tobar, M., et al. (eds) Applied
Technologies. ICAT 2019. Communications in Computer and Information Science, 1193. Springer,
Cham: 286 – 300

Ford, N. & Richards, M. (2020) Fundamentals of Software Architecture. 4th Revision. O'Reilly
Media. Sebastapol, CA, USA

Escoffier, C. & Lalanda, P. (2017) Resource-Oriented Framework for Representing Pervasive
Context. In: 2017 IEEE International Congress on Internet of Things. IEEE: 155 – 158

Gan, W. et al. (2023) Web 3.0: The Future of the Internet. In: WWW '23 Companion, 30 April - 4
May, 2023, Austin, TX, USA. ACM: 1 – 10

Gorski, P. L. et al. (2022) “I Just Looked for the Solution!” On Integrating Security-Relevent
Information in Non-Security API Documentation to Support Secure Coding Practices. IEEE
Transactions on Software Engineering, 48 (9): 3467 – 3484

Guha, S. & Majumder, S. (2020) A Comparative Study Between GraphQL & RESTful Services in
API Management of Stateless Architecture. International Journal on Web Computing, 11 (2): 1 – 16

Hohpe, G. & Woolf, B. (2004) Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Pearson. Boston, MA, USA.

Hohpe, G. & Woolf, B. (2023) Remote Procedure Invocation | Messaging Patterns. Enterprise
Integration Patterns. [Available Online]
https://www.enterpriseintegrationpatterns.com/patterns/messaging/EncapsulatedSynchronousIntegra
tion.html

Höst, M., et al. (2012) Planning. In: Experimentation in Software Engineering, Berlin, Heidelberg.
Springer Berlin Heidelburg: 89 – 116

Hustad, E. & Olsen, D. H. (2021) Creating a Sustainable Digital Infrastructure: The Role of
Service-Oriented Architecture. Procedia Computer Science, 181: 597 - 604

73

Ireland, S. M. & Martin, A. C.R. (2021) GraphQL for the Devliery of Bioinformatics Web APIs and
Application to ZincBind. Bioinformatics Advances: 1 – 7

Jambusaria, A. (2021) GraphQL Service Layer to Enable Client-driven, Optimised, and Secure
Front-end Architecture. International Research Journal of Engineering and Technology, 8 (4): 303
– 308

Konieczny, M., Roksela, P., & Zielinski, S. (2020) Evaluating Execution Strategies of GraphQL
Queries. TSP 2020. IEEE: 640 – 644

Kornienko, D. V. et al. (2021) Principles of Securing RESTful API Web Services Developed with
Python Frameworks. Journal of Physics: Conference Series, 2094: 1 – 11

Lamo, Y. et al. (2019) A GraphQL Approach to Healthcare Information Exchange with HL7 FHIR.
Procedia Computer Science, 160: 338 – 345

Liu Y. et al. (2008) Resource-Oriented Architecture for Business Purposes. In: 15th Asia-Pacific
Software Engineering Conference. IEEE: 395 – 402

Manuba, I. B. K. & Vohra, N. (2022) Implementation of REST API vs GraphQL in Microservice
Architecture. International Conference on Information Management and Technology, 11 – 12
August, 2022. IEEE: 45 – 50

Martin, R. C. (2023) Functional Design: Principles, Patterns, and Practices. Addison-Wesley.
Hoboken, New Jersey, USA.

Rasheedh, J. A. & Saradha, S. (2020) Review of Micro-services Architectures and Runtime
Dynamic Binding. In: Fourth International Conference on I-SMAC. IEEE: 1130 – 1137

Richardson, L. & Ruby, S. (2007) Restful Web Services. O'Reilly. Sebastapol, CA, USA.

StudySmarter (2024) Distributed Programming | Explanations. StudySmarter [Available Online]
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/distributed-
programming/

Wilkins, P. (2022) The Differences Between APIs and Messaging for Application Communication |
What is an API?. Oracle Canada. [Available Online] https://www.oracle.com/ca-en/cloud/cloud-
native/api-management/what-is-api/apis-and-messaging-differences/

Zanevych, O. (2024) Advancing Web Development: A Comparative Analysis of Modern
Frameworks for REST and GraphQL Back-end Services. International Scientific Journal «Grail of
Science», (37): 216 – 228

74

11. Appendices

11.1 Appendix I: Views-Rendering Middleware Source Code

11.1.1 Main Program Code

11.1.1.1 package.json

{
 "name": "node-project",
 "version": "1.0.0",
 "description": "Complete Node.js Guide",
 "main": "sever.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "nodemon server.js",
 "start-server": "node server.js"
 },
 "author": "L. M. Saxton",
 "license": "ISC",
 "devDependencies": {
 "nodemon": "^3.1.0"
 },
 "dependencies": {
 "bcryptjs": "^2.4.3",
 "body-parser": "^1.20.2",
 "connect-flash": "^0.1.1",
 "connect-mongo": "^5.1.0",
 "csurf": "^1.11.0",
 "ejs": "^3.1.10",
 "express": "^4.19.2",
 "express-session": "^1.18.0",
 "express-validator": "^7.1.0",
 "mongodb": "^6.8.0",
 "mongoose": "^8.5.1",
 "sqlite3": "^5.1.7",
 "uuid": "^10.0.0"
 }
}

11.1.1.2 server.js:

// Node-specific dependencies
const http = require('http');

75

// Third-party packages
const bodyParser = require('body-parser');
const path = require('path');
const express = require('express');
const session = require('express-session');
const mongoose = require('mongoose');
const MongoDbStore = require('connect-mongo');
const csrf = require('csurf');
const flash = require('connect-flash');

const errorController = require('./controllers/errors');

const MONGODB_URI = 'mongodb://127.0.0.1:27017/shop'

const server = express();
const sessionStore = new MongoDbStore({
 mongoUrl: MONGODB_URI,
 collection: 'sessions',
 ttl: 24 * 60 * 60,
});

const csrfProtection = csrf();

server.set('view engine', 'ejs');
server.set('views', 'views');

// Own dependencies
const adminRoutes = require('./routes/admin');
const shopRoutes = require('./routes/shop');
const authRoutes = require('./routes/auth');

const User = require('./models/user');
const rootDir = require('./util/path')

// middleware
server.use(bodyParser.urlencoded({ extended: false })); // x-www-
form-urlencoded
server.use(express.static(path.join(rootDir, 'public')));
server.use(
 session({
 secret:
'98273yrvb9837wy4cv987wy4c987y984w7y4987yt49n87tya,kcxdpurvjf987es
yr78364n938h38gtb394ng3984thn3847gt',
 resave: false,
 saveUninitialized: false,
 store: sessionStore,

76

 })
);
// initialise CSRF token
server.use(csrfProtection);
// intialise flash middleware
server.use(flash());

// user middleware
server.use((request, response, next) => {
 if (!request.session.user) {
 return next();
 }
 // mongoose built-in function
 User.findById(request.session.user._id)
 .then(user => {
 // mongoose user model
 request.user = user;
 next();
 })
 .catch(err => {
 console.log('Error finding user', err);
 next(err);
 });
});

// set local variables passed into views
server.use((request, response, next) => {
 // Authentication
 response.locals.isAuthenticated = request.session.isLoggedIn;
 // CSRF token
 response.locals.csrfToken = request.csrfToken();
 next()
})

server.use('/admin', adminRoutes);
server.use(shopRoutes);
server.use(authRoutes);

server.get('/500', errorController.get500);

server.use(errorController.get404);

server.use((error, request, response, next) => {
 response.status(500).render('500', {
 pageTitle: 'Error - 500',
 path: '/500',

77

 isAuthenticated: request.session.isLoggedIn,
 });
});

mongoose
 .connect('mongodb://127.0.0.1:27017/shop')
 .then(result => {
 console.log('Database connected!')
 server.listen(3000);
 console.log('Server listening...');
 })
 .catch(err => {
 console.log(err);
 })

78

11.1.2 Models

11.1.2.1 order.js:

const mongoose = require('mongoose')

const Schema = mongoose.Schema;

const orderSchema = new Schema({
 products: [{
 product: {
 type: Object,
 required: true,
 },
 quantity: {
 type: Number,
 required: true,
 }
 }],
 user: [{
 email: {
 type: String,
 required: true,
 },
 userId: {
 type: Schema.Types.ObjectId,
 required: true,
 ref: 'User'
 },
 }],
});

module.exports = mongoose.model('Order', orderSchema);

11.1.2.2 product.js

const mongoose = require('mongoose');

const Schema = mongoose.Schema;

// define a data schema
const productSchema = new Schema({
 // use key: value pairs w/ object type
 title: {
 type: String,
 required: true,

79

 },
 author: {
 type: String,
 required: true,
 },
 price: {
 type: Number,
 required: true,
 },
 imageUrl: {
 type: String,
 required: true,
 },
 description: {
 type: String,
 required: true,
 },
 userId: {
 type: Schema.Types.ObjectId,
 ref: 'User',
 required: true,
 }
});

module.exports = mongoose.model('Product', productSchema);

11.1.2.3 user.js

const mongoose = require('mongoose');

const Schema = mongoose.Schema;

const userSchema = new Schema({
 email: {
 type: String,
 required: true,
 },
 password: {
 type: String,
 required: true,
 },
 cart: {
 items: [
 {
 productId: {

80

 type: Schema.Types.ObjectId,
 ref: 'Product',
 required: true,
 },
 quantity: {
 type: Number,
 required: true,
 },
 }
]
 },
});

// creating a function for mongoose
userSchema.methods.addToCart = function (product) {
 if (!this.cart.items) {
 this.cart.items = [];
 console.log('Cart Initialised!');
 } else {
 console.log('Cart Found!');
 }
 const cartProductIndex = this.cart.items.findIndex(cartProd =>
{
 return cartProd.productId.toString() ===
product._id.toString();
 });
 let newQuantity = 1;
 const updatedCartItems = [...this.cart.items];
 if (cartProductIndex >= 0) {
 newQuantity = this.cart.items[cartProductIndex].quantity +
1;
 updatedCartItems[cartProductIndex].quantity = newQuantity
 } else {
 updatedCartItems.push({
 productId: product._id,
 quantity: newQuantity,
 });
 }
 const updatedCart = {
 items: updatedCartItems
 };
 this.cart = updatedCart;
 // built-in mongoose function
 return this.save();
};

81

userSchema.methods.removeFromCart = function (productId) {
 const updatedCartItems = this.cart.items.filter(item => {
 return item.productId.toString() !== productId.toString();
 });
 this.cart.items = updatedCartItems;
 return this.save();
};

userSchema.methods.clearCart = function () {
 this.cart = { items: [] };
 return this.save();
};

module.exports = mongoose.model('User', userSchema);

82

11.1.3 Controllers

11.1.3.1 admin.js:

const { validationResult } = require('express-validator')

// use capital for class name
const Product = require('../models/product');

// GET Add-Product Page
exports.getAddProduct = (request, response, next) => {
 response.render('admin/add-product', {
 pageTitle: 'Add Product',
 path: '/admin/add-product',
 addedProducts: '',
 hasError: false,
 productErrorMessage: null,
 });
};

// POST a new product through POST route
exports.postAddProduct = (request, response, next) => {
 const title = request.body.title;
 const author = request.body.author;
 const imageUrl = request.body.imageUrl;
 const price = request.body.price;
 const description = request.body.description;
 const errors = validationResult(request);

 if (!errors.isEmpty()) {
 console.log(errors.array());
 // if don't return, sends double headers.
 return response.status(422).render('admin/add-product', {
 pageTitle: 'Add Product',
 path: '/admin/add-product',
 editing: false,
 hasError: true,
 addedProducts: {
 title: title,
 author: author,
 imageUrl: imageUrl,
 price: price,
 description: description,
 },

83

 productErrorMessage: 'Cannot submit an incomplete
product.'
 })
 };

 const addedProducts = new Product({
 title: title,
 author: author,
 imageUrl: imageUrl,
 price: price,
 description: description,
 userId: request.user._id,
 });
 addedProducts
 .save()
 .then(result => {
 console.log('PRODUCT ADDED');
 response.redirect('/admin/products');
 })
 .catch(err => {
 const error = new Error(err);
 error.httpStatusCode = 500;
 return next(error);
 })

};

exports.getProductList = (request, response, next) => {
 Product.find({userId: request.user._id})
 .then(products => {
 response.render('admin/products', {
 addedProducts: products,
 pageTitle: 'Admin Products',
 path: '/admin/products',
 editing: false,
 hasError: false,
 })
 })
 .catch(err => {
 const error = new Error(err);
 error.httpStatusCode = 500;
 return next(error);
 });
}

exports.deleteProduct = (request, response, next) => {

84

 const productId = request.params.productId;
 console.log(productId)
 Product.findById(productId)
 .then(product => {
 if (!product) {
 return next(new Error('Product not found'));
 }
 // function built-in to mongoose
 return Product.deleteOne({
 _id: productId,
 userId: request.user._id
 });
 })
 .then(() => {
 console.log('PRODUCT DELETED')
 // ASYNC js views request => won't render a new page,
just return new data
 response.status(200).json({
 message: 'Success!'
 });
 })
 .catch(err => {
 response.status(500).json('Deleting product failed.');
 });

}

11.1.3.2 auth.js:

const bcrypt = require('bcryptjs');
const { validationResult } = require('express-validator');

const User = require('../models/user');

exports.getLogin = (request, response, next) => {
 let loginMessage = request.flash('loginError')
 if (loginMessage.length > 0) {
 loginMsg = loginMessage[0];
 } else {
 loginMsg = null;
 }
 return response.status(422).render('auth/login', {
 path: '/login',
 pageTitle: 'Login',
 errorMessage: 'Invalid email or password',

85

 loginErrorMessage: loginMsg,
 oldInput: {
 email: '',
 password: '',
 },
 });
};

exports.postLogin = (request, response, next) => {
 const email = request.body.email;
 const password = request.body.password;

 User.findOne({email: email})
 .then(user => {
 if (!user) {
 request.flash('loginError', 'Invalid email or
password.');
 return response.status(422).render('auth/login', {
 path: '/login',
 pageTitle: 'Login',
 loginErrorMessage: 'Invalid email or
password',
 oldInput: {
 email: email,
 password: password,
 },
 });
 }
 bcrypt
 .compare(password, user.password)
 .then(doMatch => {
 if (doMatch) {
 console.log('Login successful!')
 request.session.isLoggedIn = true;
 request.session.user = user;
 return request.session.save((err) => {
 console.log(err);
 response.redirect('/');
 });
 } else {
 request.flash('loginError', 'Invalid email
or password.');
 return
response.status(422).render('auth/login', {
 path: '/login',
 pageTitle: 'Login',

86

 loginErrorMessage: 'Invalid email or
password',
 oldInput: {
 email: email,
 password: password,
 },
 });
 };
 })
 .catch(err => {
 console.log(err);
 response.redirect('/login')
 });
 })
};

exports.postLogout = (request, response, next) => {
 request.session.destroy(() => {
 response.redirect('/');
 });
};

exports.getCreateUser = (request, response, next) => {
 let emailMessage = request.flash('emailError');
 if (emailMessage.length > 0) {
 emailMsg = emailMessage[0];
 } else {
 emailMsg = null;
 }

 let passwordMessage = request.flash('passwordError')
 if (passwordMessage.length > 0) {
 passwordMsg = passwordMessage[0];
 } else {
 passwordMsg = null;
 }

 response.render('auth/create-user', {
 pageTitle: 'Create an Account',
 path: '/signup',
 emailErrorMessage: emailMessage,
 passwordErrorMessage: passwordMessage,
 validationErrorMessage: null,
 oldInput: {
 email: "",
 password: "",

87

 confirmPassword: "",
 }

 });
};

exports.postCreateUser = (request, response, next) => {
 const email = request.body.email;
 const password = request.body.password;
 const confirmPassword = request.body.confirmPassword;
 const errors = validationResult(request);

 if (!errors.isEmpty()) {
 console.log(errors.array());
 // common code for failed validation
 return response.status(422).render('auth/create-user', {
 path: '/signup',
 pageTitle: 'Create an Account',
 validationErrorMessage: errors.array()[0].msg,
 oldInput: {
 email: email,
 password: password,
 confirmPassword: request.body.confirmPassword,
 },
 // return the first error message
 emailErrorMessage: null,
 passwordErrorMessage: null,
 });
 };

 bcrypt
 .hash(password, 12)
 .then(hashedPassword => { // chain the .then block
 if (password === confirmPassword) {
 const user = new User({
 email: email,
 password: hashedPassword,
 cart: { items: [] },
 })
 return user.save();
 } else {
 request.flash('passwordError', 'Passwords do
not match; please try again.');
 return response.redirect('/signup');
 };
 })

88

 .then(result => {
 response.redirect('/login');
 })
 .catch(err => {
 console.log(err);
 });
};

11.1.3.3 errors.js:

// throws a 404 error
exports.get404 = (request, response, next) => {
 response.status(404).render('404', {
 pageTitle: 'Page Not Found',
 path: request.path,
 });
}

exports.get500 = (request, response, next) => {
 response.status(500).render('500', {
 pageTitle: 'Error - 500; Internal Error',
 path: '/500',
 })
}

11.1.3.4 shop.js:

// use capital for class name
const Product = require('../models/product');
const Order = require('../models/order');

// GET products on home page
exports.getProducts = (request, response, next) => {
 Product.find()
 .then(products => {
 response.render('shop/product-list', {
 addedProducts: products,
 pageTitle: 'Available Products',
 path: '/products',
 });
 });
 };

exports.getProduct = (request, response, next) => {

89

 const productId = request.params.productId;
 // findById == mongoose built in method
 Product.findById(productId)
 .then(product => {
 response.render('shop/product-detail', {
 pageTitle: product.title,
 product: product,
 path: '/products',
 });
 })
 .catch(err => console.log(err));
};

exports.getIndex = (request, response, next) => {
 Product.find()
 .then((products) => {
 response.render('shop/index', {
 pageTitle: 'The Book Shop',
 addedProducts: products,
 path: '/',
 });
 })
 .catch(err => {
 console.log(err);
 })
};

exports.getCart = (request, response, next) => {
 request.user
 .populate('cart.items.productId')
 .then(user => {
 const products = user.cart.items;
 response.render('shop/cart', {
 path: '/cart',
 pageTitle: 'Your Cart',
 addedProducts: products,
 });
 })
 .catch(err => console.log(err));
};

exports.postCart = (request, response, next) => {
 // .productId is the name used in the view
 const productId = request.body.productId
 // mongoose built-in function
 Product.findById(productId)

90

 .then(product => {
 return request.user.addToCart(product);
 })
 .then(result => {
 response.redirect('./cart');
 })
 .catch(err => {
 console.log(err);
 });
};

exports.postCartDeleteProduct = (request, response, next) => {
 const productId = request.body.productId;
 request.user
 .removeFromCart(productId)
 .then(result => {
 response.redirect('./cart');
 })
 .catch(err => {
 console.log(err);
 });
};

exports.postOrder = (request, response, next) => {
 // get the products in the user's cart
 request.user
 .populate('cart.items.productId')
 .then(user => {
 console.log(user.cart.items);
 // map out the products for later use
 const products = user.cart.items.map(item => {
 // wrap productId in {...x._doc } to access the
data we want
 return { quantity: item.quantity, product:
{ ...item.productId._doc } };
 });
 // initialise a new order
 const order = new Order({
 user: {
 email: request.user.email,
 userId: request. user,
 },
 products: products,
 });
 return order.save();
 })

91

 .then(result => {
 return request.user.clearCart();
 })
 .then(() => {
 response.redirect('./orders');
 })
 .catch(err => {
 console.log(err);
 next(err);
 });
}

exports.getOrders = (request, response, next) => {
 Order
 .find({
 "user.userId": request.user._id,
 })
 .then(orders => {
 response.render('shop/orders', {
 path: '/orders',
 pageTitle: 'Your Orders',
 orders: orders,
 });
 })
 .catch(err => {
 console.log(err);
 });

92

11.1.4 Views

11.1.4.1 404.ejs:

<%- include('includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('includes/navigation.ejs') %>

 <main>
 <h1 class="centered">Error - 404</h1>
 <hr>

 <h1>Page not found!</h1>

 </main>

<%- include('includes/end.ejs') %>

11.1.4.2 500.ejs:

<%- include('includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('includes/navigation.ejs') %>

 <main>
 <h1 class="centered">Error - 500</h1>
 <hr>

 <h1>SERVER ERROR</h1>

 </main>

<%- include('includes/end.ejs') %>

93

11.1.4.3 Admin

11.1.4.3.1 add-product.ejs:

<%- include('../includes/head.ejs') %>

<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>

 <main>
 <h1 class="centered">Add A Book</h1>
 <% if (productErrorMessage) { %>
 <div class="centered"><%= productErrorMessage %></div>

 <% } %>

 <form class="product-form" action="/admin/add-product"
method="POST">
 <div class="form-control">
 <label for="title">Title</label>
 <input type="text" name="title" id="title"
value="<%= addedProducts.title %>">
 </div>
 <div class="form-control">
 <label for="author">Author</label>
 <input type="text" name="author" id="author"
value="<%= addedProducts.author %>">
 </div>
 <div class="form-control">
 <label for="imageUrl">Image URL</label>
 <input type="text" name="imageUrl" id="imageUrl"
value="<%= addedProducts.imageUrl %>">
 </div>
 <div class="form-control">
 <label for="title">Price</label>
 <input type="number" name="price" id="price"
step="0.01" value="<%= addedProducts.price %>">
 </div>
 <div class="form-control">
 <label for="description">Description</label>

94

 <textarea name="description" id="description"
rows="5" value="<%= addedProducts.description %>"></textarea>
 </div>
 <div>
 <input type="hidden" name="_csrf" value="<%=
csrfToken%>">
 <button type="sumbit">Add Product</button>
 </div>
 </form>

 </main>

<%- include('../includes/end.ejs') %>

11.1.4.3.2 edit-product.ejs:

<%- include('../includes/head.ejs') %>

<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>

 <main>
 <h1 class="centered">Add A Book</h1>
 <% if (productErrorMessage) { %>
 <div class="centered"><%= productErrorMessage %></div>

 <% } %>

 <form class="product-form" action="/admin/edit-product"
method="POST">
 <div class="form-control">
 <label for="title">Title</label>
 <input type="text" name="title" id="title"
value="<%= product.title %>">
 </div>
 <div class="form-control">
 <label for="author">Author</label>
 <input type="text" name="author" id="author"
value="<%= product.author %>">
 </div>
 <div class="form-control">

95

 <label for="imageUrl">Image URL</label>
 <input type="text" name="imageUrl" id="imageUrl"
value="<%= product.imageUrl %>">
 </div>
 <div class="form-control">
 <label for="title">Price</label>
 <input type="number" name="price" id="price"
step="0.01" value="<%= product.price %>">
 </div>
 <div class="form-control">
 <label for="description">Description</label>
 <textarea name="description" id="description"
rows="5" value="<%= product.description %>"></textarea>
 </div>
 <div>
 <input type="hidden" name="_csrf" value="<%=
csrfToken%>">
 <button type="sumbit">Add Product</button>
 </div>
 </form>

 </main>

<%- include('../includes/end.ejs') %>

11.1.4.3.3 products.ejs:

<%- include('../includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>

 <main>
 <h1 class="centered">Book List</h1>
 <hr>
 <% if (addedProducts.length > 0) { %>
 <div class="grid">
 <% for (let product of addedProducts) { %>
 <article class="card product-item">
 <header>
 <h1 class="product__title"><%=
product.title %></h1>

96

 </header>
 <div class="card__image">
 <img src="<%= product.imageUrl %>" alt="<
%= product.title %>">
 </div>
 <div class="card__content">
 <h4 class="product__author"><%=
product.author %></h4>
 <h2 class="product__price">$<%=
product.price %></h2>
 <p class="product__description"><%=
product.description %>.</p>
 </div>
 <div class="card__actions">
 <input type="hidden" name="_csrf" value="<
%= csrfToken %>">
 <input type="hidden" value="<%=
product._id %>" name="productId">
 <button class = 'btn' type="button"
onclick="deleteProduct(this)">Delete</button>
 </div>

 </article>
 <% } %>
 </div>
 <% } else { %>
 <h1>No Products Found!</h1>
 <% } %>
 </main>

<%- include('../includes/end.ejs') %>
<!-- Put the js on the bottom -->
<script src="/js/admin.js"></script>

97

11.1.4.4 Auth

11.1.4.4.1 create-user.ejs:

<%- include('../includes/head.ejs') %>

<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>

 <main>
 <h1 class="centered">Create An Account</h1>

 <% if (validationErrorMessage) { %>
 <div class="centered"><%= validationErrorMessage
%></div>
 <% } %>
 <% if (emailErrorMessage) { %>
 <div class="centered"><%= emailErrorMessage %></div>
 <% } %>
 <% if (passwordErrorMessage) { %>
 <div class="centered"><%= passwordErrorMessage
%></div>
 <% } %>
 <form class="product-form" action="/signup" method="POST">
 <div class="form-control">
 <label for="email">Email</label>
 <input type="text" name="email" id="email"
value="<%= oldInput.email %>">
 </div>
 <div class="form-control">
 <label for="password">Password</label>
 <input type="password" name="password"
id="password" value="<%= oldInput.password %>">
 </div>
 <div class="form-control">
 <label for="confirmPassword">Confirm
Password</label>
 <input type="password" name="confirmPassword"
id="confirmPassword" value="<%= oldInput.confirmPassword %>">
 </div>
 <div>

98

 <input type="hidden" name="_csrf" value="<%=
csrfToken %>">
 <button type="submit">Signup</button>
 </div>
 </form>

 </main>

<%- include('../includes/end.ejs') %></body>

11.1.4.4.2 login.ejs:

<%- include('../includes/head.ejs') %>

<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>

 <main>
 <h1 class="centered">User Login</h1>

 <% if (loginErrorMessage) { %>
 <div class="centered"><%= loginErrorMessage %></div>

 <% } %>
 <form class="product-form" action="/login" method="POST">
 <div class="form-control">
 <label for="email">Email</label>
 <input type="text" name="email" id="email"
value="<%= oldInput.email %>">
 </div>
 <div class="form-control">
 <label for="password">Password</label>
 <input type="password" name="password"
id="password" value="<%= oldInput.password %>">
 </div>
 <input type="hidden" name="_csrf" value="<%= csrfToken
%>">
 <button type="submit">Login</button>
 </form>

 </main>

99

<%- include('../includes/end.ejs') %>

100

11.1.4.5 Includes

11.1.4.5.1 add-to-cart.ejs:

<form action="/cart" method="POST">
 <input type="hidden" name="_csrf" value="<%= csrfToken %>">
 <button type="submit">Add to Cart</button>
 <input type="hidden" name="productId" value="<%= product._id
%>">
</form>

11.1.4.5.2 end.ejs:

</body>

</html>

11.1.4.5.3 head.ejs:

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <meta http-equiv="X-US-Compatible" content="ie=edge">
 <title><%= pageTitle %></title>
 <link rel="stylesheet" href="/css/main.css">

11.1.4.5.4 navigation.ejs:

 <header class="main-header">
 <nav class="main-header__nav">
 <ul class="main-header__item-list">

 <li class="main-header__item"><a class="<%= path
=== '/' ? 'active' : '' %>" href="/">Shop
 <li class="main-header__item"><a class="<%= path
=== '/products' ? 'active' : '' %>"
href="/products">Products

 <% if (isAuthenticated) { %>

101

 <li class="main-header__item"><a class="<%= path
=== '/cart' ? 'active' : '' %>" href="/cart">Cart
 <li class="main-header__item"><a class="<%= path
=== '/orders' ? 'active' : '' %>" href="/orders">Orders

 <li class="main-header__item"><a class="<%= path
=== '/admin/add-product' ? 'active' : '' %>" href="/admin/add-
product">Add Product
 <li class="main-header__item"><a class="<%= path
=== '/admin/products' ? 'active' : '' %>"
href="/admin/products">My Products

 <form class="main-header__item" action="/logout"
method="POST">
 <input type="hidden" name="_csrf" value="<%=
csrfToken %>">
 <button type="submit">Logout</button>
 </form>
 <% } %>
 </nav>
 </header>

102

11.1.4.6 Shop

11.1.4.6.1 cart.ejs

<%- include('../includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>
 <main>
 <h1 class="centered">Your Cart</h1>
 <hr>
 <% if (addedProducts.length > 0) { %>

 <% addedProducts.forEach(productDisplay => { %>

 <h1>
 <%= productDisplay.productId.title %>
 </h1>
 <h2>
 Quantity: <%= productDisplay.quantity
%>
 </h2>
 <form action="/cart-delete-item"
method="POST">
 <input type="hidden" name="_csrf"
value="<%= csrfToken %>">
 <input type="hidden" value="<%=
productDisplay.productId._id %>" name="productId">
 <button type="submit">Delete</button>
 </form>

 <% }) %>

 <hr>

 <div class="centered">
 <form action="/create-order" method="POST">
 <input type="hidden" name="_csrf" value="<%=
csrfToken %>">
 <button type="submit">Order Now!</button>
 </form>

103

 </div>

 <%} else { %>

 <h1>No Products in Cart!</h1>
 <% } %>
 </main>
 <%- include('../includes/end.ejs') %>

11.1.4.6.2 index.ejs:

<%- include('../includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>

 <main>
 <h1 class="centered">The Book Shop</h1>
 <% if (isAuthenticated) { %>
 <h2>Welcome back!</h2>
 <% } else { %>
 <div class = "grid">
 <p>Have an account? <a href="/login"
method="GET">Login</p>
 <p>First time? <a href="/signup" method="GET"
>Create an account</p>
 </div>
 <% } %>
 <hr>
 <h1 class="centered">Available Books</h1>
 <% if (addedProducts.length > 0) { %>
 <div class="grid">
 <% for (let product of addedProducts) { %>
 <article class="card product-item">
 <header>
 <h1 class="product__title"><%=
product.title %></h1>
 </header>
 <div class="card__image">
 <img src="<%= product.imageUrl %>" alt="<
%= product.title %>">
 </div>

104

 <div class="card__content">
 <h4 class="product__author"><%=
product.author %></h4>
 <h2 class="product__price">$<%=
product.price %></h2>
 <p class="product__description"><%=
product.description %>.</p>
 </div>
 <div class="card__actions">
 <% if (isAuthenticated) { %>
 <%- include('../includes/add-to-
cart.ejs', {product: product}) %>
 <% } %>
 </div>

 </article>
 <% } %>
 </div>
 <% } else { %>
 <h1>No Products Found!</h1>
 <% } %>
 </main>

<%- include('../includes/end.ejs') %>

11.1.4.6.3 orders.ejs:

<%- include('../includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>
 <main>
 <h1 class="centered">Your Orders</h1>
 <hr>

 <% if (orders.length <= 0) { %>
 <h1>No Orders!</h1>
 <% } else { %>
 <ul class="orders">
 <% orders.forEach(order => { %>
 <li class="orders__item">
 <h1>Order # <%= order._id %></h1>

105

 <ul class="orders__products">
 <% order.products.forEach(product => { %>
 <li class="orders__products-item">
 <h1>
 <%= product.product.title %>
 </h1>
 <h2>
 Price: $<%=
product.product.price %>

 Quantity: <%= product.quantity
%>
 </h2>

 <% }) %>
 <hr>

 <% }) %>

 <% } %>

 </main>
 <%- include('../includes/end.ejs') %>

11.1.4.6.4 product-detail.ejs:

<%- include('../includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>
 <main class="centered">
 <% if (isAuthenticated) { %>
 <h1><%= product.title %></h1>
 <% } else { %>
 <h1><%= product.title %></h1>
 <div class = "left">
 <p>Have an account? <a href="/login"
method="GET">Login</p>
 <p>First time? <a href="/signup" method="GET"
>Create an account</p>

106

 </div>
 <% } %>
 <hr>
 <div>
 <img src="<%= product.imageUrl %>" alt="<%=
product.title %>">
 </div>
 <h2><%= product.price %></h2>
 <p><%= product.description %></p>
 <% if (isAuthenticated) { %>
 <%- include('../includes/add-to-cart.ejs', {product:
product}) %>
 <% } %>
 </main>
 <%- include('../includes/end.ejs', {product: product}) %>

11.1.4.6.5 product-list.ejs:

<%- include('../includes/head.ejs') %>
<link rel="stylesheet" href="/css/product.css">
<link rel="stylesheet" href="/css/form.css">
</head>

<body>

 <%- include('../includes/navigation.ejs') %>

 <main>
 <% if (isAuthenticated) { %>
 <h1 class="centered">Available Books</h1>
 <% } else { %>
 <h1 class="centered">Available Books</h1>
 <div class = "grid">
 <p>Have an account? <a href="/login"
method="GET">Login</p>
 <p>First time? <a href="/signup" method="GET"
>Create an account</p>
 </div>
 <% } %>
 <hr>
 <% if (addedProducts.length > 0) { %>
 <div class="centered">

 <% for (let product of addedProducts) { %>
 <article class="card product-item">
 <header>

107

 <h1 class="product__title"><%=
product.title %></h1>
 </header>
 <div class="card__image">
 <img src="<%= product.imageUrl %>" alt="<
%= product.title %>">
 </div>
 <div class="card__content">
 <h4 class="product__author"><%=
product.author %></h4>
 <h2 class="product__price">$<%=
product.price %></h2>
 <p class="product__description"><%=
product.description %>.</p>
 </div>
 <div class="card__actions">
 <input type="hidden" name="_csrf" value="<
%= csrfToken %>">
 <form action="/products/<%= product._id
%>" method="GET">
 <button type="submit">Details</button>
 </form>
 <% if (isAuthenticated) { %>
 <%- include('../includes/add-to-
cart.ejs', {product: product}) %>
 <% } %>
 </div>

 <hr>
 </article>
 <% } %>
 </div>
 <% } else { %>
 <h1>No Products Found!</h1>
 <% } %>
 </main>

<%- include('../includes/end.ejs') %>

108

11.1.5 Public

11.1.5.1 CSS

11.1.5.1.1 form.css:

.form-control {
 margin: 1rem 0;
}

.form-control label,

.form-control input,

.formcontrol textarea {
 display: block;
 width: 100%;
}

.form-control input,

.formcontrol textarea {
 border: 1px solid #26520d;
 font: inherit;
 border-radius: 2px;
}

.form-control input:focus,

.form-control textarea:focus {
 outline-color: #00695c;
}

button {
 font: inherit;
 border: 1px solid #26520d;
 color: #26520d;
 background: white;
 border-radius: 3px;
 cursor: pointer;
}

button:hover,
button:active {
 background-color: #26520d;
 color: white;
}

109

11.1.5.1.2 main.css:

body {
 margin: 0;
 padding: 0;
 font-family: sans-serif;
}

main {
 padding: 1rem;
}

.main-header {
 width: 100%;
 height: 3.5rem;
 background-color: #26520d;
 padding: 0 1.5rem;
}

.main-header__nav {
 height: 100%;
 display: flex;
 align-items: center;
 justify-content: space-between;
}

.main-header__item-list {
 list-style: none;
 margin: 0;
 padding: 0;
 display: flex;
}

.main-header__item {
 margin: 0 1rem;
 padding: 0;

}

.main-header__item a {
 text-decoration: none;
 color: white;
}

.main-header__item a:hover,

.main-header__item a:active,

110

.main-header__item a.active {
 color: #d6cb2c;
}

.centered {
 text-align: center;
}

.left {
 text-align: left;
}

11.1.5.1.3 product.css:

.product-form {
 width: 20rem;
 max-width: 90%;
 margin: auto;
}

111

11.1.5.2 JavaScript

11.1.5.2.1 admin.js:

// executes on the client side views with <script>

const deleteProduct = (btn) => {
 // extract the product ID value
 const productId =
btn.parentNode.querySelector('[name=productId').value;
 // extract the CSRF value
 const csrf =
btn.parentNode.querySelector('[name=_csrf').value;

 const productElement = btn.closest('article');
 // method supported by the browser for fetching/sending HTTP
requests
 fetch('/admin/product/' + productId, {
 method: 'DELETE',
 headers: {
 'csrf-token': csrf,
 }
 })
 .then(result => {
 return result.json();
 })
 .then(data => {
 console.log(data);
 productElement.parentNode.removeChild(productElement);
 })
 .catch(err => {
 console.log(err)
 });
};

112

11.1.6 Routes

11.1.6.1 admin.js

const path = require('path');
const express = require('express');
const { check, body } = require('express-validator');

// Own dependencies
const rootDir = require('../util/path');
const adminController = require('../controllers/admin');
const isAuth = require('../middleware/is-auth');

const router = express.Router();

// /admin/add-product => GET
router.get('/add-product', isAuth, adminController.getAddProduct);

// // /admin/products => GET
router.get('/products', isAuth, adminController.getProductList)

// /admin/add-product => POST
router.post('/add-product', [
 body('title')
 .isString()
 .isLength({ min: 3 })
 .trim(),
 body('author')
 .isString()
 .isLength({ min: 3 })
 .trim(),
 body('imageUrl')
 .isURL(),
 body('price')
 .isFloat(),
 body('description')
 .isLength({ max: 40 })
], isAuth, adminController.postAddProduct);

// /admin/product/productId => DELETE
router.delete('/product/:productId', isAuth,
adminController.deleteProduct);

113

module.exports = router;

11.1.6.2 auth.js

const express = require('express');
// import check function from package
const { check, body } = require('express-validator');

const authController = require('../controllers/auth');
const isAuth = require('../middleware/is-auth');
const User = require('../models/user');

const router = express.Router();

// /login => GET
router.get('/login', authController.getLogin);

// /log => POST
router.post(
 '/login',
 [
 check('email')
 .isEmail()
 .withMessage('Please enter a valid email.')
 .normalizeEmail(),

 body('password', 'Invalid password.')
 .isLength({ min: 8 })
 .isAlphanumeric()
 .trim(),
],
 authController.postLogin);

// /logout => POST
router.post('/logout', check(), isAuth, authController.postLogout)

// /signup => GET
router.get('/signup', authController.getCreateUser);

// /signup => POST
router.post(
 '/signup',
 [

114

 check('email')
 .isEmail()
 .withMessage('Please enter a valid email.')
 .custom((value, { request }) => {
 // Async validation
 return User.findOne({ email: value })
 .then(userDoc => {
 // validation rejection
 if (userDoc) {
 return Promise.reject('Email
already exists.')
 };
 })
 })
 .normalizeEmail(),
 body('password')
 .isLength({ min: 8 })
 .withMessage('Password needs to be at least 8
characters.')
 .isAlphanumeric()
 .withMessage('Password can only contain letters
and numbers.')
 .trim(),
 body('confirmPassword')
 .isLength({ min: 8 })
 .withMessage('Password needs to be at least 8
characters.')
 .isAlphanumeric()
 .withMessage('Password can only contain letters
and numbers.')
 .trim(),
],
 authController.postCreateUser
);

module.exports = router;

11.1.6.3 shop.js

const path = require('path');
const express = require('express');

const shopController = require('../controllers/shop');
const isAuth = require('../middleware/is-auth');

115

const router = express.Router();

// /index => GET
router.get('/', shopController.getIndex);

// /products => GET
router.get('/products', shopController.getProducts);

// /products/productId => GET
router.get('/products/:productId', shopController.getProduct);

// /cart => GET
router.get('/cart', isAuth, shopController.getCart);

// /cart => POST
router.post('/cart', isAuth, shopController.postCart);

// /cart-delete-item => POST
router.post('/cart-delete-item', isAuth,
shopController.postCartDeleteProduct);

// /orders => GET
router.get('/orders', isAuth, shopController.getOrders);

// /create-order => POST
router.post('/create-order', isAuth, shopController.postOrder);

// /checkout => GET
// router.get('/checkout', shopController.getCheckout);

// /checkout => POST
// router.post('/checkout', shopController.postCheckout);

module.exports = router;

116

11.1.7 Middleware

11.1.7.1 is-auth.js:

module.exports = (request, response, next) => {
 if (!request.session.isLoggedIn) {
 return response.redirect('/login');
 }
 next();
};

117

11.1.8 Util

11.1.8.1 path.js:

const path = require('path');

module.exports = path.dirname(require.main.filename);

118

11.2 Appendix II: REST Backend Source Code

11.2.1 Main Program Code

11.2.1.1 package.json

{
 "name": "rest-api",
 "version": "1.0.0",
 "description": "Complete Node.js Guide",
 "main": "app.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "nodemon app.js",
 "start-server": "app server.js"
 },
 "author": "L. M. Saxton",
 "license": "ISC",
 "devDependencies": {
 "nodemon": "^3.1.0"
 },
 "dependencies": {
 "bcryptjs": "^2.4.3",
 "body-parser": "^1.20.2",
 "connect-flash": "^0.1.1",
 "connect-mongo": "^5.1.0",
 "csurf": "^1.11.0",
 "ejs": "^3.1.10",
 "express": "^4.19.2",
 "express-session": "^1.18.0",
 "express-validator": "^7.1.0",
 "jsonwebtoken": "^9.0.2",
 "mongodb": "^6.8.0",
 "mongoose": "^8.5.1",
 "multer": "^1.4.5-lts.1",
 "sqlite3": "^5.1.7",
 "uuid": "^10.0.0"
 }
}

11.2.1.2 app.js

// Node Dependencies
const path = require('path');

119

// Third Party Dependencies
const express = require('express');
const bodyParser = require('body-parser');
const mongoose = require('mongoose');

// Own dependencies
const feedRoutes = require('./routes/feed');
const authRoutes = require('./routes/auth');

const app = express();

// Server Middleware
app.use(express.json()); // POSTMAN doesn't work with this
included
// image upload service

app.use((req, res, next) => {
 res.setHeader('Access-Control-Allow-Origin', '*'); // allows
access to every client
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, PUT,
PATCH, DELETE'); // allows the origins to use spec HTTP methods
 res.setHeader('Access-Control-Allow-Headers', 'Content-Type,
Authorization'); // Which headers are always allowed || content
types allowed in request / allows extra authentication data from
clients
 // moves response ahead
 next();
});

// Routes middleware
app.use('/api', feedRoutes);
app.use('/api/auth', authRoutes);

// Error middleware
app.use((error, req, res, next) => {
 console.log(error);
 const status = error.statusCode || 500;
 const message = error.message;
 const data = error.data;
 res.status(status).json({
 message: message,
 data: data,
 });
})

mongoose.connect('mongodb://127.0.0.1:27017/rest')

120

 .then(result => {
 console.log('Database connected...');
 app.listen(4000);
 console.log('Server listening...')
 })
 .catch(err => {
 console.log('DATABASE CONNECTION FAILED!');
 console.log(err);
 });

121

11.2.2 Models

11.2.2.1 post.js

const mongoose = require('mongoose');
const Schema = mongoose.Schema;

const postSchema = new Schema({
 title: {
 type: String,
 required: true,
 },
 content: {
 type: String,
 required: true,
 },
 creator: {
 type: Schema.Types.ObjectId,
 ref: 'User',
 required: true,
 },

},
 { timestamps: true }
);

module.exports = mongoose.model('Post', postSchema);

11.2.2.2 user.js

const mongoose = require('mongoose');
const Schema = mongoose.Schema;

const userSchema = new Schema({
 name: {
 type: String,
 required: true,
 },
 email: {
 type: String,
 required: true,
 },
 password: {
 type: String,
 required: true

122

 },
 status: {
 type: String,
 default: 'I am new!'
 },
 posts: [{
 // store schema / reference for posts
 type: Schema.Types.ObjectId,
 ref: 'Post',
 }]
});

module.exports = mongoose.model('User', userSchema);

123

11.2.3 Controllers

11.2.3.1 auth.js

const { validationResult } = require('express-validator');
const bcrypt = require('bcryptjs');
const jwt = require('jsonwebtoken');

const User = require('../models/user');

exports.putSignup = (req, res, next) => {
 const errors = validationResult(req);
 if (!errors.isEmpty()) {
 const error = new Error('Validation failed!');
 error.statusCode = 422;
 error.data = errors.array();
 throw error;
 };

 const name = req.body.name;
 const email = req.body.email;
 const password = req.body.password;

 // hash the password
 bcrypt.hash(password, 12)
 .then(hashedPw => {
 const user = new User({
 name: name,
 email: email,
 password: hashedPw,
 });
 // save user object to db
 return user.save();
 })
 .then(result => {
 res.status(201).json({
 message: 'User created!',
 userId: result._id,
 });
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);

124

 });
};

exports.postLogin = (req, res, next) => {
 const email = req.body.email;
 const password = req.body.password;
 let loadedUser;
 User.findOne({ email: email })
 .then(user => {
 if (!user) {
 const error = new Error('Invalid credentials!');
 // not authenticated = 404
 error.statusCode = 404;
 throw error;
 };
 loadedUser = user;
 return bcrypt.compare(password, user.password);
 })
 .then(isEqual => {
 if (!isEqual) {
 const error = new Error('Invalid credentials!');
 error.statusCode = 404;
 throw error;
 };
 const token = jwt.sign({
 email: loadedUser.email,
 userId: loadedUser._id.toString(),
 },
 // secret string, ASCII 64 bit

'f42952d5d0f2e342c4b6ebe80ab6cc968d8bcc7020ff1c7a5a8b057c790039e59
8df323029cbac2993e7d6742b6362c3ca5cad0279925c43b288c9419e6122bb',
 // token expiration
 { expiresIn: '75h' }
);
 res.status(200).json({
 token: token,
 userId: loadedUser._id.toString(),
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 })

125

};

11.2.3.2 feed.js

// Third Party Dependencies
const { validationResult } = require('express-validator');
const fs = require('fs');
const path = require('path');

// Own dependencies
const Post = require('../models/post');
const User = require('../models/user');

exports.getPosts = (req, res, next) => {
 Post.find()
 .then(posts => {
 // send back JSON as a response
 // status codes are very important for APIs
 res.status(200).json({
 posts: posts,
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 })
};

// naming convention: HTTP method + object
exports.postPost = (req, res, next) => {
 const errors = validationResult(req);
 if (!errors.isEmpty()) {
 const error = new Error('Validation failed!');
 console.log(error)
 // 422 => validation failed
 error.statusCode = 422
 throw error;
 };

 const title = req.body.title;
 const content = req.body.content;
 let creator;

126

 // create post in db
 const post = new Post({
 title: title,
 content: content,
 creator: req.userId,
 });
 // save model to db
 post
 .save()
 .then(result => {
 return User.findById(req.userId);
 })
 .then(user => {
 creator = user;
 // push the post object to the user
 user.posts.push(post);
 user.save();
 })
 .then(result => {
 // 201 = successful created resource
 res.status(201).json({
 post: post,
 creator: {
 _id: creator._id,
 name: creator.name,
 }
 });
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 });
};

exports.getPost = (req, res, next) => {
 const postId = req.params.postId;
 Post.findById(postId)
 .then(post => {
 if (!post) {
 const error = new Error('POST NOT FOUND!')
 error.statusCode = 404;
 // passes error to catch block
 throw error;

127

 }
 res.status(200).json({
 post: post,
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 });
}

exports.putPost = (req, res, next) => {
 const postId = req.params.postId;
 const errors = validationResult(req);

 if (!errors.isEmpty()) {
 const error = new Error('VALIDATION FAILED');
 console.log(error)
 // 422 => validation failed
 error.statusCode = 422
 throw error;
 };

 const title = req.body.title;
 const content = req.body.content;

 Post.findById(postId)
 .then(post => {
 if (!post) {
 const error = new Error('NO POST FOUND');
 error.statusCode = 404;
 throw error;
 }
 // make sure the user ID matches the JWT
 if (post.creator.toString() !== req.userId) {
 const error = new Error('NOT AUTHORISED!');
 error.statusCode = 403;
 throw error;
 }
 // overwrite / save updated post
 post.title = title;
 post.content = content;
 return post.save();
 })

128

 .then(result => {
 // Not a new resource, so not 201
 res.status(200).json({
 post: result,
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 });
};

exports.deletePost = (req, res, next) => {
 const postId = req.params.postId;
 Post.findById(postId)
 .then(post => {
 console.log(post.creator);
 console.log(req.userId);
 if (!post) {
 const error = new Error('NO POST FOUND');
 error.statusCode = 404;
 throw error;
 }
 if (post.creator.toString() !== req.userId) {
 const error = new Error('NOT AUTHORISED!');
 error.statusCode = 403;
 throw error;
 }
 return Post.findByIdAndDelete(postId);
 })
 .then(result => {
 return User.findById(req.userId);
 })
 .then(user => {
 user.posts.pull(postId);
 user.save();
 })
 .then(result => {
 res.status(200).json({
 message: 'POST DELETED',
 });
 })
 .catch(err => {
 if (!err.statusCode) {

129

 err.statusCode = 500;
 };
 next(err);
 });

};

130

11.2.4 Routes

11.2.4.1 auth.js

const express = require('express');
const { check, body } = require('express-validator');

const isAuth = require('../middleware/is-auth');

const User = require('../models/user');
const authController = require('../controllers/auth');

const router = express.Router();

router.put('/signup',
 [
 body('name')
 .trim()
 .notEmpty(),
 body('email')
 .isEmail()
 .withMessage('Please enter a valid email.')
 .custom((value, { req }) => {
 return User.findOne({
 email: value
 }).then(userDoc => {
 if (userDoc) {
 return Promise.reject('Email address
already exists!');
 };
 });
 })
 .normalizeEmail(),
 body('password')
 .trim()
 .isLength({ min: 8, max: 20 })
],
 authController.putSignup);

router.post('/login', authController.postLogin);

module.exports = router;

131

11.2.4.2 feed.js

// Third Party Dependencies
const express = require('express');
const { check, body } = require('express-validator');
const isAuth = require('../middleware/is-auth');

// Own dependencies
const feedController = require('../controllers/feed');

const router = express.Router();

// GET /feed/posts
router.get('/posts', isAuth, feedController.getPosts);

// POST /feed/post
router.post(
 '/post',
 isAuth,
 [
 body('title')
 .trim()
 .isLength({
 min: 5,
 max: 40,
 }),
 body('content')
 .trim()
 .isLength({
 min: 5,
 max: 500,
 }),
],
 feedController.postPost
);

// GET /feed/post/:postId
router.get('/post/:postId', isAuth, feedController.getPost);

router.put('/post/:postId',
 isAuth,
 [
 body('title')
 .trim()
 .isLength({
 min: 5,

132

 max: 40,
 }),
 body('content')
 .trim()
 .isLength({
 min: 5,
 max: 500,
 }),
],
 feedController.putPost
);

router.delete('/post/:postId', isAuth, feedController.deletePost);

module.exports = router;

133

11.2.5 Middleware

11.2.5.1 is-auth.js

const jwt = require('jsonwebtoken');

module.exports = (req, res, next) => {
 const authHeader = req.get('Authorization');
 if (!authHeader) {
 const error = new Error('AUTHENTICATION FAILED');
 error.statusCode = 401;
 throw error;
 }
 const token = authHeader.split(' ')[1];
 console.log(token);
 let decodedToken;
 try {
 // verify the JWT token + secret key
 decodedToken = jwt.verify(token,
'f42952d5d0f2e342c4b6ebe80ab6cc968d8bcc7020ff1c7a5a8b057c790039e59
8df323029cbac2993e7d6742b6362c3ca5cad0279925c43b288c9419e6122bb');
 } catch (err) {
 err.statusCode = 500;
 throw err;
 };
 if (!decodedToken) {
 const error = new Error('AUTHENTICATION FAILED!')
 error.statusCode = 401;
 throw error;
 };
 // stores decoded user ID for future requests
 req.userId = decodedToken.userId;
 next();
}

134

11.3 Appendix III: GraphQL Backend Source Code

11.3.1 Main Program Code

11.3.1.1 package.json:

{
 "name": "graphql-api",
 "version": "1.0.0",
 "description": "Complete Node.js Guide",
 "main": "app.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "nodemon app.js",
 "start-server": "app server.js",
 "codegen": "graphql-codegen --config code-gen.js"
 },
 "author": "L. M. Saxton",
 "license": "ISC",
 "devDependencies": {
 "@graphql-codegen/jsdoc": "^3.0.0",
 "@graphql-codegen/schema-ast": "^4.1.0",
 "nodemon": "^3.1.0",
 "ts-graphql-plugin": "^4.0.3",
 "typescript": "^5.5.4",
 "@graphql-codegen/typescript": "4.0.9",
 "@graphql-codegen/typescript-mongodb": "3.0.0",
 "@graphql-codegen/typescript-document-nodes": "4.0.9",
 "@graphql-codegen/typescript-resolvers": "4.2.1",
 "@graphql-codegen/introspection": "4.0.3",
 "@graphql-codegen/cli": "5.0.2"
 },
 "dependencies": {
 "@babel/plugin-transform-class-properties": "^7.24.7",
 "@graphql-codegen/cli": "^5.0.2",
 "bcryptjs": "^2.4.3",
 "body-parser": "^1.20.2",
 "connect-flash": "^0.1.1",
 "connect-mongo": "^5.1.0",
 "csurf": "^1.11.0",
 "ejs": "^3.1.10",
 "express": "^4.19.2",
 "express-graphql": "^0.12.0",
 "express-session": "^1.18.0",
 "express-validator": "^7.1.0",
 "graphql": "^15.9.0",

135

 "jsonwebtoken": "^9.0.2",
 "mongodb": "^6.8.0",
 "mongoose": "^8.5.1",
 "multer": "^1.4.5-lts.1",
 "sqlite3": "^5.1.7",
 "uuid": "^10.0.0",
 "validator": "^13.12.0"
 }
}

11.3.1.2 app.js:

// Node Dependencies
const path = require('path');

// Third Party Dependencies
const express = require('express');
const bodyParser = require('body-parser');
const mongoose = require('mongoose');
const gqlHttp = require('express-graphql');

// Own dependencies
const gqlSchema = require('./graphql/schema');
const gqlResolvers = require('./graphql/resolvers');
const auth = require('./middleware/auth');

const app = express();

// Server Middleware
app.use(express.json()); // POSTMAN doesn't work with this
included
// image upload service

app.use((req, res, next) => {
 res.setHeader('Access-Control-Allow-Origin', '*'); // allows
access to every client
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, PUT,
PATCH, DELETE'); // allows the origins to use spec HTTP methods
 res.setHeader('Access-Control-Allow-Headers', 'Content-Type,
Authorization'); // Which headers are always allowed || content
types allowed in request / allows extra authentication data from
clients
 if (req.method === 'OPTIONS') {
 return res.sendStatus(200);
 }

136

 // moves response ahead
 next();
});

// returns isAuth = false / true depending
// kicks it back to resolver
app.use(auth);

app.use(
 '/api/graphql',
 gqlHttp.graphqlHTTP({
 schema: gqlSchema,
 rootValue: gqlResolvers,
 graphiql: true,
 customFormatErrorFn(err) {
 if (!err.originalError) {
 return err;
 }
 const data = err.originalError.data;
 const message = err.message || 'An error
occurred.'; // || => default value if variable = null
 const code = err.originalError.code || 500;
 return { message: message, status: code, data: data };
 }
}));

// Error middleware
app.use((error, req, res, next) => {
 console.log(error);
 const status = error.statusCode || 500;
 const message = error.message;
 const data = error.data;
 res.status(status).json({
 message: message,
 data: data,
 });
})

mongoose.connect('mongodb://127.0.0.1:27017/graphql')
 .then(result => {
 console.log('Database connected...');
 app.listen(5000);
 console.log('Server listening...')
 })
 .catch(err => {
 console.log('DATABASE CONNECTION FAILED!');

137

 console.log(err);
 });

138

11.3.2 GraphQL

11.3.2.1 resolvers.js:

// Third Party Dependencies
const bcrypt = require('bcryptjs');
//requires GQL@15.9.0 --> not latest; no found vulns
const validator = require('validator');
const jwt = require('jsonwebtoken');

// Own Dependencies
const User = require('../models/user');
const Post = require('../models/post');

module.exports = {
 createUser: async function ({ userInput }, req) {
 // resolve userInputData with async userInput
 const errors = []
 // validation statements
 if (!validator.isEmail(userInput.email)) {
 errors.push({
 message: 'Email is invalid!'
 });
 }
 if (validator.isEmpty(userInput.password) ||
 !validator.isLength(userInput.password, { min: 8, max:
20 })) {
 errors.push({ message: 'Password too short!' });
 }
 if (errors.length > 0) {
 const error = new Error('Invalid input!');
 // linked to the formatError setting for GQL
 error.data = errors;
 error.code = 422;
 throw error;
 }
 const existingUser = await User.findOne({ email:
userInput.email })
 if (existingUser) {
 const error = new Error('User already exists!');
 throw error;
 }
 const hashedPw = await bcrypt.hash(userInput.password,
12);
 const user = new User({

139

 email: userInput.email,
 name: userInput.name,
 password: hashedPw,
 });
 const createdUser = await user.save();
 // user object returned to schema by resolver
 return {
 ...createdUser._doc,
 _id: createdUser ._id.toString()
 };
 },
 login: async function({ email, password }) {
 const user = await User.findOne({ email: email });
 if (!user) {
 const error = new Error('User not found!');
 error.code = 401;
 throw error;
 }
 const isEqual = bcrypt.compare(password, user.password);
 if (!isEqual) {
 const error = new Error('Password is incorrect!');
 error.code = 401;
 throw error;
 }
 const token = jwt.sign({
 userId: user._id.toString(),
 email: user.email,
 },
 // Secret key, ASCII 64 bit

'f42952d5d0f2e342c4b6ebe80ab6cc968d8bcc7020ff1c7a5a8b057c790039e59
8df323029cbac2993e7d6742b6362c3ca5cad0279925c43b288c9419e6122bb',
 { expiresIn: '1hr' }
);
 return { token: token, userId: user._id.toString() };
 },
 createPost: async function ({ postInput }, req) {
 // check is user is authenticated
 if (!req.isAuth) {
 const error = new Error('ACTION FORBIDDEN');
 error.code = 404;
 throw error;
 }
 const errors = [];
 if (validator.isEmpty(postInput.title) ||

140

 !validator.isLength(postInput.title, { min: 5, max: 40
})) {
 errors.push({
 message: 'Invalid title: [min: 5, max: 40]'
 })
 }
 if (validator.isEmpty(postInput.content) ||
 !validator.isLength(postInput.content, { min: 5, max:
500 })) {
 errors.push({
 message: 'Invalid content [min: 5, max: 500]'
 })
 }
 if (errors.length > 0) {
 const error = new Error('Invalid input!');
 // linked to the formatError setting for GQL
 error.data = errors;
 error.code = 422;
 throw error;
 }
 // get user from db
 const user = await User.findById(req.userId);
 if (!user) {
 const error = new Error('USER NOT FOUND!');
 error.code = 401;
 throw error;
 }
 const post = new Post({
 title: postInput.title,
 content: postInput.content,
 creator: user,
 });
 const createdPost = await post.save();
 // sends post to user's db file
 user.posts.push(createdPost);
 await user.save();
 return {
 ...createdPost._doc,
 _id: createdPost._id.toString(),
 createdAt: createdPost.createdAt.toISOString(),
 updatedAt: createdPost.updatedAt.toISOString()
 };
 },
 posts: async function (args, req) {
 if (!req.isAuth) {
 const error = new Error('ACTION FORBIDDEN');

141

 error.code = 404;
 throw error;
 }
 const posts = await Post
 .find()
 .sort({ createdAt: -1 })
 .populate('creator');
 // format post data to that which GQL can read / return
data
 return {
 posts: posts.map(post => {
 return {
 ...post._doc,
 _id: post._id.toString(),
 createdAt: post.createdAt.toISOString(),
 updatedAt: post.updatedAt.toISOString(),
 }
 }),
 };
 },
 post: async function ({ postId }, req) {
 if (!req.isAuth) {
 const error = new Error('ACTION FORBIDDEN');
 error.code = 404;
 throw error;
 }
 const post = await
Post.findById(postId).populate('creator');
 if (!post) {
 const error = new Error('POST NOT FOUND!');
 error.code = 404;
 throw error;
 }
 return {
 ...post._doc,
 _id: post._id.toString(),
 createdAt: post.createdAt.toISOString(),
 updatedAt: post.updatedAt.toISOString(),
 };
 },
 updatePost: async function ({ postId, postInput }, req) {
 if (!req.isAuth) {
 const error = new Error('ACTION FORBIDDEN');
 error.code = 404;
 throw error;
 }

142

 const post = await
Post.findById(postId).populate('creator');
 if (!post) {
 const error = new Error('POST NOT FOUND!');
 error.code = 404;
 throw error;
 }
 if (post.creator._id.toString() !== req.userId.toString())
{
 const error = new Error('ACTION FORBIDDEN');
 error.code = 403;
 throw error;
 }
 const errors = [];
 if (validator.isEmpty(postInput.title) ||
 !validator.isLength(postInput.title, { min: 5, max: 40
})) {
 errors.push({
 message: 'Invalid title: [min: 5, max: 40]'
 })
 }
 if (validator.isEmpty(postInput.content) ||
 !validator.isLength(postInput.content, { min: 5, max:
500 })) {
 errors.push({
 message: 'Invalid content [min: 5, max: 500]'
 })
 }
 if (errors.length > 0) {
 const error = new Error('Invalid input!');
 // linked to the formatError setting for GQL
 error.data = errors;
 error.code = 422;
 throw error;
 }
 post.title = postInput.title;
 post.content = postInput.content;
 const updatedPost = await post.save();
 return {
 ...updatedPost._doc,
 _id: updatedPost._id.toString(),
 createdAt: updatedPost.createdAt.toISOString(),
 updatedAt: updatedPost.updatedAt.toISOString(),
 };
 },
 deletePost: async function({ postId }, req) {

143

 if (!req.isAuth) {
 const error = new Error('ACTION FORBIDDEN');
 error.code = 404;
 throw error;
 }
 const post = await
Post.findById(postId).populate('creator');
 if (!post) {
 const error = new Error('POST NOT FOUND!');
 error.code = 404;
 throw error;
 }
 if (post.creator._id.toString() !== req.userId.toString())
{
 const error = new Error('ACTION FORBIDDEN');
 error.code = 403;
 throw error;
 }
 // delete post from db
 await Post.findByIdAndDelete(postId);

 //delete post from user
 const user = await User.findById(req.userId);
 user.posts.pull(postId);
 await user.save();
 return true;
 },
 user: async function(args, req) {
 if (!req.isAuth) {
 const error = new Error('ACTION FORBIDDEN');
 error.code = 404;
 throw error;
 }
 const user = await User.findById(req.userId);
 if (!user) {
 const error = new Error('USER NOT FOUND!');
 error.code = 404;
 throw error;
 }
 return {
 ...user._doc,
 _id: user._id.toString(),
 }
 },
 updateStatus: async function ({ status }, req) {
 if (!req.isAuth) {

144

 const error = new Error('ACTION FORBIDDEN');
 error.code = 404;
 throw error;
 }
 const user = await User.findById(req.userId);
 if (!user) {
 const error = new Error('USER NOT FOUND!');
 error.code = 404;
 throw error;
 }
 user.status = status;
 await user.save();
 return {
 ...user._doc,
 _Id: user._id.toString(),
 }
 },
};

11.3.2.2 schema.js:

const { buildSchema } = require('graphql');

// build / export the GQL schema
module.exports = buildSchema(`
 type Post {
 _id: ID!
 title: String!
 content: String!
 creator: User!
 createdAt: String!
 updatedAt: String!
 }

 type User {
 _id: ID!
 name: String!
 email: String!
 password: String
 status: String!
 posts: [Post!]!
 }

 type AuthData {
 token: String!

145

 userId: String!
 }

 type PostData {
 posts: [Post!]!
 }

 input UserInputData {
 email: String!
 name: String!
 password: String!
 }

 input PostInputData {
 title: String!
 content: String!
 }

 type RootQuery {
 login(email: String!, password: String!): AuthData!
 posts: PostData!
 post(postId: ID!): Post!
 user: User!
 }

 type RootMutation {
 createUser(userInput: UserInputData): User!
 createPost(postInput: PostInputData): Post!
 updatePost(postId: ID!, postInput: PostInputData): Post!
 deletePost(postId: ID!): Boolean
 updateStatus(status: String!): User!
 }

 schema {
 query: RootQuery
 mutation: RootMutation
 }
`);

146

11.3.3 Models

11.3.3.1 post.js:

const mongoose = require('mongoose');
const Schema = mongoose.Schema;

const postSchema = new Schema({
 title: {
 type: String,
 required: true,
 },
 content: {
 type: String,
 required: true,
 },
 creator: {
 type: Schema.Types.ObjectId,
 ref: 'User',
 required: true,
 },

},
 { timestamps: true }
);

module.exports = mongoose.model('Post', postSchema);

11.3.3.2 user.js:

const mongoose = require('mongoose');
const Schema = mongoose.Schema;

const userSchema = new Schema({
 name: {
 type: String,
 required: true,
 },
 email: {
 type: String,
 required: true,
 },
 password: {
 type: String,
 required: true

147

 },
 status: {
 type: String,
 default: 'I am new!'
 },
 posts: [{
 // store schema / reference for posts
 type: Schema.Types.ObjectId,
 ref: 'Post',
 }]
});

module.exports = mongoose.model('User', userSchema);

148

11.3.4 Controllers

11.3.4.1 auth.js:

const { validationResult } = require('express-validator');
const bcrypt = require('bcryptjs');
const jwt = require('jsonwebtoken');

const User = require('../models/user');

exports.putSignup = (req, res, next) => {
 const errors = validationResult(req);
 if (!errors.isEmpty()) {
 const error = new Error('Validation failed!');
 error.statusCode = 422;
 error.data = errors.array();
 throw error;
 };

 const name = req.body.name;
 const email = req.body.email;
 const password = req.body.password;

 // hash the password
 bcrypt.hash(password, 12)
 .then(hashedPw => {
 const user = new User({
 name: name,
 email: email,
 password: hashedPw,
 });
 // save user object to db
 return user.save();
 })
 .then(result => {
 res.status(201).json({
 message: 'User created!',
 userId: result._id,
 });
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);

149

 });
};

exports.postLogin = (req, res, next) => {
 const email = req.body.email;
 const password = req.body.password;
 let loadedUser;
 User.findOne({ email: email })
 .then(user => {
 if (!user) {
 const error = new Error('Invalid credentials!');
 // not authenticated = 404
 error.statusCode = 404;
 throw error;
 };
 loadedUser = user;
 return bcrypt.compare(password, user.password);
 })
 .then(isEqual => {
 if (!isEqual) {
 const error = new Error('Invalid credentials!');
 error.statusCode = 404;
 throw error;
 };
 const token = jwt.sign({
 email: loadedUser.email,
 userId: loadedUser._id.toString(),
 },
 // secret string, ASCII 64 bit

'f42952d5d0f2e342c4b6ebe80ab6cc968d8bcc7020ff1c7a5a8b057c790039e59
8df323029cbac2993e7d6742b6362c3ca5cad0279925c43b288c9419e6122bb',
 // token expiration
 { expiresIn: '1h' }
);
 res.status(200).json({
 token: token,
 userId: loadedUser._id.toString(),
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 })

150

};

11.3.4.2 feed.js:

// Third Party Dependencies
const { validationResult } = require('express-validator');
const fs = require('fs');
const path = require('path');

// Own dependencies
const Post = require('../models/post');
const User = require('../models/user');

exports.getPosts = (req, res, next) => {
 Post.find()
 .then(posts => {
 // send back JSON as a response
 // status codes are very important for APIs
 res.status(200).json({
 posts: posts,
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 })
};

// naming convention: HTTP method + object
exports.postPost = (req, res, next) => {
 const errors = validationResult(req);
 if (!errors.isEmpty()) {
 const error = new Error('Validation failed!');
 console.log(error)
 // 422 => validation failed
 error.statusCode = 422
 throw error;
 };

 const title = req.body.title;
 const content = req.body.content;
 let creator;

151

 // create post in db
 const post = new Post({
 title: title,
 content: content,
 creator: req.userId,
 });
 // save model to db
 post
 .save()
 .then(result => {
 return User.findById(req.userId);
 })
 .then(user => {
 creator = user;
 // push the post object to the user
 user.posts.push(post);
 user.save();
 })
 .then(result => {
 // 201 = successful created resource
 res.status(201).json({
 post: post,
 creator: {
 _id: creator._id,
 name: creator.name,
 }
 });
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 });
};

exports.getPost = (req, res, next) => {
 const postId = req.params.postId;
 Post.findById(postId)
 .then(post => {
 if (!post) {
 const error = new Error('POST NOT FOUND!')
 error.statusCode = 404;
 // passes error to catch block
 throw error;

152

 }
 res.status(200).json({
 post: post,
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 });
}

exports.putPost = (req, res, next) => {
 const postId = req.params.postId;
 const errors = validationResult(req);

 if (!errors.isEmpty()) {
 const error = new Error('VALIDATION FAILED');
 console.log(error)
 // 422 => validation failed
 error.statusCode = 422
 throw error;
 };

 const title = req.body.title;
 const content = req.body.content;

 Post.findById(postId)
 .then(post => {
 if (!post) {
 const error = new Error('NO POST FOUND');
 error.statusCode = 404;
 throw error;
 }
 // make sure the user ID matches the JWT
 if (post.creator.toString() !== req.userId) {
 const error = new Error('NOT AUTHORISED!');
 error.statusCode = 403;
 throw error;
 }
 // overwrite / save updated post
 post.title = title;
 post.content = content;
 return post.save();
 })

153

 .then(result => {
 // Not a new resource, so not 201
 res.status(200).json({
 post: result,
 })
 })
 .catch(err => {
 if (!err.statusCode) {
 err.statusCode = 500;
 }
 next(err);
 });
};

exports.deletePost = (req, res, next) => {
 const postId = req.params.postId;
 Post.findById(postId)
 .then(post => {
 console.log(post.creator);
 console.log(req.userId);
 if (!post) {
 const error = new Error('NO POST FOUND');
 error.statusCode = 404;
 throw error;
 }
 if (post.creator.toString() !== req.userId) {
 const error = new Error('NOT AUTHORISED!');
 error.statusCode = 403;
 throw error;
 }
 return Post.findByIdAndDelete(postId);
 })
 .then(result => {
 return User.findById(req.userId);
 })
 .then(user => {
 user.posts.pull(postId);
 user.save();
 })
 .then(result => {
 res.status(200).json({
 message: 'POST DELETED',
 });
 })
 .catch(err => {
 if (!err.statusCode) {

154

 err.statusCode = 500;
 };
 next(err);
 });

};

155

11.3.5 Middleware

11.3.5.1 auth.js:

const jwt = require('jsonwebtoken');

module.exports = (req, res, next) => {
 const authHeader = req.get('Authorization');
 if (!authHeader) {
 req.isAuth = false;
 return next();
 }
 const token = authHeader.split(' ')[1];
 let decodedToken;
 try {
 // verify the JWT token + secret key
 decodedToken = jwt.verify(token,
'f42952d5d0f2e342c4b6ebe80ab6cc968d8bcc7020ff1c7a5a8b057c790039e59
8df323029cbac2993e7d6742b6362c3ca5cad0279925c43b288c9419e6122bb');
 } catch (err) {
 req.isAuth = false;
 return next();
 };
 if (!decodedToken) {
 req.isAuth = false;
 return next();
 };
 // stores decoded user ID for future requests
 req.userId = decodedToken.userId;
 req.isAuth = true;
 next();
};

156

11.4 Appendix IV: Views-Rendering Application Demonstration

Figures 1 & 2: Unauthenticated Home and authenticated Home

Figure 3: User Validation Example – Add Product

157

Figure 4: Application Logic Error – Order Placement

Figure 5: Fixed Application Logic Error – Order Placement

158

Figure 6: Access Control Example – User Sessions

159

11.5 Appendix V: REST Backend Demonstration

Figure 1: REST API Backend – ‘User A’ Login

Figure 2: REST API Backend – Unauthenticated GET

160

Figure 3: REST API Backend – ‘User B’ Login

Figure 4: REST API Backend – Authenticated GET

161

Figure 5: REST API Backend – Unauthenticated PUT Request

Figure 6: REST API Backend – Unauthenticated PUT Request Bearer Token

162

11.6 Appendix VI: GraphQL Backend Demonstration

Figure 1: GraphQL API Backend – Unauthenticated Query

Figure 2: GraphQL API Backend – ‘User A’ Login

163

Figure 3: GraphQL API Backend – Authenticated Query

Figure 4: GraphQL API Backend – ‘User B’ Login

164

Figure 5: GraphQL API Backend – Unauthenticated Mutation

Figure 6: GraphQL API Backend – Unauthenticated Mutation Bearer Token

165

11.7 Appendix VII: GraphQL Postman JSON Queries

CREATE USER

{
"query": "mutation { createUser(userInput:
{ email: \"newuser@example.com\", name: \"New User\",
password: \"securepassword\" }) { _id name email } }"

}

LOGIN

{
"query": "query { login(email: \"user@example.com\", password:
\"yourpassword\") { token userId } }"

}

GET USER

{
"query": "query { user { _id name email status posts { _id } }
}"

}

UPDATE USER

{
"query": "mutation { updateStatus(status: \"Just Got a Fender
Strat!\") { _id name email status } }"

}

CREATE POST

{
"query": "mutation($postInput: PostInputData!)
{ createPost(postInput: $postInput) { _id title content
creator { _id name } createdAt updatedAt } }", "variables":
{ "postInput": { "title": "My New Post", "content": "This is
the content of the new post." } }

}

166

GET POSTS

{
"query": "query { posts {posts { _id title content
creator{name}} } }"

}

GET SINGLE POST

{
"query": "query { post(postId: \"66a67ef4ef394c4103be9f67\") {
_id title content creator { name } } }"

}

UPDATE POST

{
"query": "mutation
{ updatePost(postId: \"66a7611058def1d6f635af9d\", postInput:
{ title: \"The Long and Winding Road\", content: \"Brought me
here to your door. Don't make me, nah, nah, nah -- I forget
the words.\" }) { _id title content createdAt updatedAt } }" }

DELETE POST

{
"query": "mutation
{ deletePost(postId: \"66a68012b6439bf6f4dc083c\") }"

}

167

11.8 Appendix VIII: Active Reconnaissance Source Code

11.8.1 Views-Rending Middleware

11.8.1.1 Step 1: Baseline Scanning

nmap.sh:

#!/bin/bash

Log file
localhost3000_log="$HOME/diss/localhost3000/nmap/timestamps/nmap-
timestamps.txt"
localhost3000_output="$HOME/diss/localhost3000/nmap/output/"

create file if not exist
touch "$localhost3000_log" || {
 echo "Failed to create file $localhost3000_log";
 exit 1;
}

touch "$localhost3000_output" || {
 echo "Failed to create file $localhost3000_output";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

{
 echo "NMAP Scan Timestamps for localhost 3000"
 echo "Make sure to cross reference with scan output"
 echo "-"
 echo "NMAP"
 echo "-"
} >> "$localhost3000_log" || {
 echo "Failed to write to $localhost3000_log";
 exit 1;
}

while [$var -lt 50];
do
 {

168

 echo "Scan $scan_number"
 echo "Start: $(date +"%T.%N")"
 } >> "$localhost3000_log"

 nmap -sC -sV localhost -oN $localhost3000_output/output-scan-
$scan_number

 {
 echo "Finish: $(date +"%T.%N")"
 echo "-"
 } >> "$localhost3000_log"

 ((var++))
 ((scan_number++))
done

11.8.1.2 Step 2: URI Brute-Forcing

dirsearch.sh

#!/bin/bash

Log life
localhost3000_log="$HOME/diss/localhost3000/dirsearch/timestamps/
timestamps.txt"
localhost3000_output="$HOME/diss/localhost3000/dirsearch/reports"

create file if not exist
touch "$localhost3000_log" || {
 echo "Failed to create file $localhost3000_log";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

{
 echo "Dirsearch Scan Timestamps for localhost 3000"
 echo "Make sure to cross reference with scan output"
 echo "Methods: GET, POST, PUT, DELETE"
 echo "-"
} >> "$localhost3000_log" || {

169

 echo "Failed to write to $localhost3000_log";
 exit 1;
}

while [$var -lt 50];
do
 {
 echo "DIRSEARCH"
 echo "Scan $scan_number"
 echo "GET: $(date)"

 } >> "$localhost3000_log"
 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --delay=1 -m GET --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/GETscan-$scan_number.txt
 {
 echo "POST: $(date)"
 } >> "$localhost3000_log"
 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --delay=1 -m POST --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/POSTscan-$scan_number.txt
 {
 echo "PUT: $(date)"
 } >> "$localhost3000_log"
 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --delay=1 -m PUT --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/PUTscan-$scan_number.txt
 {
 echo "DELETE: $(date)"
 } >> "$localhost3000_log"
 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --delay=1 -m DELETE --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/DELETEscan-$scan_number.txt
 {
 echo "Finish: $(date)"
 echo "-"
 } >> "$localhost3000_log"

 ((var++))
 ((scan_number++))
done

170

shutdown now

11.8.1.3 Step 3: Content Discovery

dirsearch-auth.sh

#!/bin/bash

Log life
localhost3000_log="$HOME/diss/localhost3000/dirsearch/timestamps/
timestamps-auth.txt"
localhost3000_output="$HOME/diss/localhost3000/dirsearch/reports/
auth"

create file if not exist
touch "$localhost3000_log" || {
 echo "Failed to create file $localhost3000_log";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

{
 echo "Dirsearch Scan Timestamps for localhost 3000"
 echo "Make sure to cross reference with scan output"
 echo "Methods: GET, POST, PUT, DELETE"
 echo "-"
} >> "$localhost3000_log" || {
 echo "Failed to write to $localhost3000_log";
 exit 1;
}

while [$var -lt 50];
do
 {
 echo "DIRSEARCH"
 echo "Scan $scan_number"
 echo "GET: $(date)"

 } >> "$localhost3000_log"

171

 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --delay=1 -m GET --
cookie="csrftoken=xhf5WOPIravaw3y0kfRBjvEajRhUnylB; connect.sid=s
%3ARzTpER2jBUm4i6E43sb5WdJZQUyC8Q3A.m8XqSPEJkcmPm%2FBaRt8P997jJ
%2BTu0ZiNhPKh0%2B2m470" --suffixes /,{id} --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/GETscan-$scan_number.txt
 {
 echo "POST: $(date)"
 } >> "$localhost3000_log"
 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --
cookie="csrftoken=xhf5WOPIravaw3y0kfRBjvEajRhUnylB; connect.sid=s
%3ARzTpER2jBUm4i6E43sb5WdJZQUyC8Q3A.m8XqSPEJkcmPm%2FBaRt8P997jJ
%2BTu0ZiNhPKh0%2B2m470" --suffixes /,{id} --delay=1 -m POST --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/POSTscan-$scan_number.txt
 {
 echo "PUT: $(date)"
 } >> "$localhost3000_log"
 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --
cookie="csrftoken=xhf5WOPIravaw3y0kfRBjvEajRhUnylB; connect.sid=s
%3ARzTpER2jBUm4i6E43sb5WdJZQUyC8Q3A.m8XqSPEJkcmPm%2FBaRt8P997jJ
%2BTu0ZiNhPKh0%2B2m470" --suffixes /,{id} --delay=1 -m PUT --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/PUTscan-$scan_number.txt
 {
 echo "DELETE: $(date)"
 } >> "$localhost3000_log"
 python3 ~/dirsearch/dirsearch.py -t 30 -u
http://127.0.0.1:3000 --
cookie="csrftoken=xhf5WOPIravaw3y0kfRBjvEajRhUnylB; connect.sid=s
%3ARzTpER2jBUm4i6E43sb5WdJZQUyC8Q3A.m8XqSPEJkcmPm%2FBaRt8P997jJ
%2BTu0ZiNhPKh0%2B2m470" --suffixes /,{id} --delay=1 -m DELETE --
subdirs /,admin/,auth/,user/ -w $HOME/api/wordlists/dummylist.txt
-o $localhost3000_output/DELETEscan-$scan_number.txt
 {
 echo "Finish: $(date)"
 echo "-"
 } >> "$localhost3000_log"

 ((var++))
 ((scan_number++))
done

172

shutdown now

173

11.8.2 REST API

11.8.2.1 Step 1: Baseline Scanning

nmap.sh

#!/bin/bash

Log file
localhost4000_log="$HOME/diss/localhost4000/nmap/timestamps/nmap-
timestamps.txt"
localhost4000_output="$HOME/diss/localhost4000/nmap/output"

create file if not exist
touch "$localhost4000_log" || {
 echo "Failed to create file $localhost4000_log";
 exit 1;
}

touch "$localhost4000_output" || {
 echo "Failed to create file $localhost4000_output";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

{
 echo "NMAP Scan Timestamps for localhost 3000"
 echo "Make sure to cross reference with scan output"
 echo "-"
 echo "NMAP"
 echo "-"
} >> "$localhost4000_log" || {
 echo "Failed to write to $localhost4000_log";
 exit 1;
}

while [$var -lt 50];
do
 {
 echo "Scan $scan_number"
 echo "Start: $(date +"%T.%N")"

174

 } >> "$localhost4000_log"

 nmap -sC -sV localhost -oN $localhost4000_output/output-scan-
$scan_number

 {
 echo "Finish: $(date +"%T.%N")"
 echo "-"
 } >> "$localhost4000_log"

 ((var++))
 ((scan_number++))
done

11.8.2.2 Step 2: URI Brute-Forcing

dirsearch.sh

#!/bin/bash

Log life
localhost4000_log="$HOME/diss/localhost4000/dirsearch/timestamps/
timestamps.txt"
localhost4000_output="$HOME/diss/localhost4000/dirsearch/reports"

create file if not exist
touch "$localhost4000_log" || {
 echo "Failed to create file $localhost4000_log";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

JWT

jwt_token="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJlbWFpbCI6Impkb2
UzNEBleGFtcGxlLmNvbSIsInVzZXJJZCI6IjY2YjM4NjRiZTZjZWQ1MDZlZGY5ZmYx
MCIsImlhdCI6MTcyMzA0MTQwNCwiZXhwIjoxNzIzMzExNDA0fQ.5_3zL7fV3BgCelN
FH5_3fEJDzlhd5gSKrqwRGP8evu0"

175

{
 echo "Dirsearch Scan Timestamps for localhost 4000"
 echo "Make sure to cross reference with scan output"
 echo "Methods: GET, POST, PUT, DELETE, PATCH"
 echo "-"
} >> "$localhost4000_log" || {
 echo "Failed to write to $localhost4000_log";
 exit 1;
}

while [$var -lt 50]; do
{
 echo "DIRSEARCH"
 echo "Scan $scan_number"
 echo "GET: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
auth-type bearer --credentials jwt_token --delay=1 -m GET --
subdirs /,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/GETscan-$scan_number.txt

{
 echo "POST: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
delay=1 -m POST --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/POSTscan-$scan_number.txt

gql_output=$(grep -oP "graphql" "$localhost4000_output/POSTscan-
$scan_number.txt")
if [-n "$gql_output"]; then
 echo "GraphQL endpoint detected -- SCAN STOPPED!"
 {
 echo "Finish: $(date)"
 echo "-"
 } >> "$localhost4000_log"
 ((var++))
 ((scan_number++))
 continue
fi

{
 echo "PUT: $(date)"
} >> "$localhost4000_log"

176

python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
delay=1 -m PUT --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/PUTscan-$scan_number.txt

{
 echo "DELETE: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
delay=1 -m DELETE --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/DELETEscan-$scan_number.txt

{
 echo "PATCH: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
delay=1 -m PATCH --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/PATCHscan-$scan_number.txt

{
 echo "Finish: $(date)"
 echo "-"
} >> "$localhost4000_log"
((var++))
((scan_number++))
done

shutdown now

11.8.2.3 Step 3: Content Discovery

dirsearch-auth.sh

#!/bin/bash

Log life
localhost4000_log="$HOME/diss/localhost4000/dirsearch/timestamps/
timestamps-auth.txt"
localhost4000_output="$HOME/diss/localhost4000/dirsearch/reports/
auth"

177

create file if not exist
touch "$localhost4000_log" || {
 echo "Failed to create file $localhost4000_log";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

JWT

jwt_token="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJlbWFpbCI6Impkb2
UzNEBleGFtcGxlLmNvbSIsInVzZXJJZCI6IjY2YjM4NjRiZTZjZWQ1MDZlZGY5ZmYx
MCIsImlhdCI6MTcyMzA0MTQwNCwiZXhwIjoxNzIzMzExNDA0fQ.5_3zL7fV3BgCelN
FH5_3fEJDzlhd5gSKrqwRGP8evu0"

{
 echo "Dirsearch Scan Timestamps for localhost 4000"
 echo "Make sure to cross reference with scan output"
 echo "Methods: GET, POST, PUT, DELETE, PATCH"
 echo "-"
} >> "$localhost4000_log" || {
 echo "Failed to write to $localhost4000_log";
 exit 1;
}

while [$var -lt 50]; do
{
 echo "DIRSEARCH"
 echo "Scan $scan_number"
 echo "GET: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
auth-type=bearer --auth=jwt_token --delay=1 -m GET --suffixes
/,/{id} --subdirs /,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt --force-recursive -o
$localhost4000_output/GETscan-$scan_number.txt

{
 echo "POST: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
auth-type=bearer --auth=jwt_token --delay=1 -m POST --

178

suffixes /,/{id} --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/POSTscan-$scan_number.txt

gql_output=$(grep -oP "graphql" "$localhost4000_output/POSTscan-
$scan_number.txt")
if [-n "$gql_output"]; then
 echo "GraphQL endpoint detected -- SCAN STOPPED!"
 {
 echo "Finish: $(date)"
 echo "-"
 } >> "$localhost4000_log"
 ((var++))
 ((scan_number++))
 continue
fi

{
 echo "PUT: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
auth-type=bearer --auth=jwt_token --delay=1 -m PUT --suffixes
/,/{id} --subdirs /,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/PUTscan-$scan_number.txt

{
 echo "DELETE: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
auth-type=bearer --auth=jwt_token --delay=1 -m DELETE --
suffixes /,/{id} --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/DELETEscan-$scan_number.txt

{
 echo "PATCH: $(date)"
} >> "$localhost4000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:4000 --
auth-type=bearer --auth=jwt_token --delay=1 -m PATCH --
suffixes /,/{id} --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost4000_output/PATCHscan-$scan_number.txt

179

{
 echo "Finish: $(date)"
 echo "-"
} >> "$localhost4000_log"
((var++))
((scan_number++))
done

shutdown now

180

11.8.3 GraphQL API

11.8.3.1 Step 1: Baseline Scanning

nmap.sh

#!/bin/bash

Log file
localhost5000_log="$HOME/diss/localhost5000/nmap/timestamps/nmap-
timestamps.txt"
localhost5000_output="$HOME/diss/localhost5000/nmap/output/"

create file if not exist
touch "$localhost5000_log" || {
 echo "Failed to create file $localhost5000_log";
 exit 1;
}

touch "$localhost5000_output" || {
 echo "Failed to create file $localhost5000_output";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

{
 echo "NMAP Scan Timestamps for localhost 3000"
 echo "Make sure to cross reference with scan output"
 echo "-"
 echo "NMAP"
 echo "-"
} >> "$localhost5000_log" || {
 echo "Failed to write to $localhost5000_log";
 exit 1;
}

while [$var -lt 50];
do
 {
 echo "Scan $scan_number"
 echo "Start: $(date +"%T.%N")"

181

 } >> "$localhost5000_log"

 nmap -sC -sV localhost -oN $localhost5000_output/output-scan-
$scan_number

 {
 echo "Finish: $(date +"%T.%N")"
 echo "-"
 } >> "$localhost5000_log"

 ((var++))
 ((scan_number++))
done

11.8.3.2 Step 2: URI Brute-Forcing

dirsearch.sh

#!/bin/bash

Log life
localhost5000_log="$HOME/diss/localhost5000/dirsearch/timestamps/
timestamps.txt"
localhost5000_output="$HOME/diss/localhost5000/dirsearch/reports"

create file if not exist
touch "$localhost5000_log" || {
 echo "Failed to create file $localhost5000_log";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

{
 echo "Dirsearch Scan Timestamps for localhost 5000"
 echo "Make sure to cross reference with scan output"
 echo "Methods: GET, POST, PUT, DELETE, PATCH"
 echo "-"
} >> "$localhost5000_log" || {
 echo "Failed to write to $localhost5000_log";

182

 exit 1;
}

while [$var -lt 50]; do
{
 echo "DIRSEARCH"
 echo "Scan $scan_number"
 echo "GET: $(date)"
} >> "$localhost5000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m GET --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/GETscan-$scan_number.txt

{
 echo "POST: $(date)"
} >> "$localhost5000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m POST --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/POSTscan-$scan_number.txt

gql_output=$(grep -oP "graphql" "$localhost5000_output/POSTscan-
$scan_number.txt")
if [-n "$gql_output"]; then
 echo "GraphQL endpoint detected -- SCAN STOPPED!"
 {
 echo "Finish: $(date)"
 echo "-"
 } >> "$localhost5000_log"
 ((var++))
 ((scan_number++))
 continue
fi

{
 echo "PUT: $(date)"
} >> "$localhost5000_log"
python3 ~/di search/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m PUT --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/PUTscan-$scan_number.txt

{
 echo "DELETE: $(date)"
} >> "$localhost5000_log"

183

python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m DELETE --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/DELETEscan-$scan_number.txt

{
 echo "PATCH: $(date)"
} >> "$localhost5000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m PATCH --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/PATCHscan-$scan_number.txt

{
 echo "Finish: $(date)"
 echo "-"
} >> "$localhost5000_log"
((var++))
((scan_number++))
done

shutdown now

11.8.3.3 Step 3: Introspection Verification

nmap-introspection.sh

#!/bin/bash

Log life
localhost5000_log="$HOME/diss/localhost5000/dirsearch/timestamps/
timestamps.txt"
localhost5000_output="$HOME/diss/localhost5000/dirsearch/reports"

create file if not exist
touch "$localhost5000_log" || {
 echo "Failed to create file $localhost5000_log";
 exit 1;
}

Scan variable
scan_number=1

184

increment variable
var=0

{
 echo "Dirsearch Scan Timestamps for localhost 5000"
 echo "Make sure to cross reference with scan output"
 echo "Methods: GET, POST, PUT, DELETE, PATCH"
 echo "-"
} >> "$localhost5000_log" || {
 echo "Failed to write to $localhost5000_log";
 exit 1;
}

while [$var -lt 50]; do
{
 echo "DIRSEARCH"
 echo "Scan $scan_number"
 echo "GET: $(date)"
} >> "$localhost5000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m GET --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/GETscan-$scan_number.txt

{
 echo "POST: $(date)"
} >> "$localhost5000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m POST --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/POSTscan-$scan_number.txt

gql_output=$(grep -oP "graphql" "$localhost5000_output/POSTscan-
$scan_number.txt")
if [-n "$gql_output"]; then
 echo "GraphQL endpoint detected -- SCAN STOPPED!"
 {
 echo "Finish: $(date)"
 echo "-"
 } >> "$localhost5000_log"
 ((var++))
 ((scan_number++))
 continue
fi

{

185

 echo "PUT: $(date)"
} >> "$localhost5000_log"
python3 ~/di search/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m PUT --subdirs /,api/,admin/,auth/,api/admin/,api/auth/
-w $HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/PUTscan-$scan_number.txt

{
 echo "DELETE: $(date)"
} >> "$localhost5000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m DELETE --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/DELETEscan-$scan_number.txt

{
 echo "PATCH: $(date)"
} >> "$localhost5000_log"
python3 ~/dirsearch/dirsearch.py -t 30 -u http://127.0.0.1:5000 --
delay=1 -m PATCH --subdirs
/,api/,admin/,auth/,api/admin/,api/auth/ -w
$HOME/api/wordlists/dummylist.txt -o
$localhost5000_output/PATCHscan-$scan_number.txt

{
 echo "Finish: $(date)"
 echo "-"
} >> "$localhost5000_log"
((var++))
((scan_number++))
done

shutdown now

11.8.3.4 Step 4: Schema Extraction

schema-bf.sh (Clairvoyance)

#!/bin/bash

Log file
localhost5000_log="$HOME/diss/localhost5000/clairvoyance/
timestamps/schema-bruteforcing.txt"

186

localhost5000_output="$HOME/diss/localhost5000/clairvoyance/
output/"

create file if not exist
touch "$localhost5000_log" || {
 echo "Failed to create file $localhost5000_log";
 exit 1;
}

touch "$localhost5000_output" || {
 echo "Failed to create file $localhost5000_output";
 exit 1;
}

Scan variable
scan_number=1

increment variable
var=0

{
 echo "Clairvoyance Schema Brute Forcing Timestamps for
localhost 5000"
 echo "Make sure to cross reference with scan output"
 echo "-"
 echo "Clairvoyance"
 echo "-"
} >> "$localhost5000_log" || {
 echo "Failed to write to $localhost5000_log";
 exit 1;
}

while [$var -lt 50];
do
 {
 echo "Scan $scan_number"
 echo "Start: $(date +"%T.%N")"
 } >> "$localhost5000_log"

 python3 -m clairvoyance http://localhost:5000/api/graphql -p
slow -w ~/api/wordlists/dummylist.txt -o
$localhost5000_output/output-scan-$scan_number

 {
 echo "Finish: $(date +"%T.%N")"
 echo "-"

187

 } >> "$localhost5000_log"

 ((var++))
 ((scan_number++))
done

188

11.9 Appendix IX: Brute-Forcing Word List

auth
login
posts
post
post
signup
logout
admin
graphql
add-product
products
product
cart
cart-delete-item
orders
create-order
ajax
drivers
arch
node
src
vendor
include
tests
Documentation
fs
lib
wp-content
sites
sound
net
app
public
core
files
modules
test
tools
docs
data
gcc
wp-includes
addons
plugins
kernel

examples
assets
wp-admin
web
packages
scripts
third
components
doc
administrator
Library
bower
package
build
themes
static
deps
chrome
profiles
target
sql
images
Godeps
libjava
spec
libraries
resources
media
java
Assets
js
README
application
release
libs
LICENSE
www
external
contributors
pkg
django
client
firmware
system
LayoutTests

library
source
common
server
security
Source
mysql-test
templates
bin
gitignore
life
img
platform
config
includes
recipes
res
Samples
user
api
python
samples
dep
frontend
framework
content
contrib
Casks
Pods
crypto
admin
aec
dist
site
misc
extensions
android
mod
gas
code
platforms
fonts
backend
bundles
ui

189

libstdc
storage
mm
openerp
htdocs
ld
db
linux
3rdparty
css
html
apps
Example
linux-3
project
board
ext
Examples
testsuite
t
xbmc
icons
website
engine
Resources
jni
sampleData
block
thirdparty
share
3rdParty
jdk
staging
gdb
boost
demo
documentation
plugin
Modules
concrete
sim
hardware
2007
metadata
puphpet
tensorflow
usr
theme

srcpkgs
projects
sass
example
idea
tmp
2011
Benchmark
frameworks
output
module
venv
atom
Data
webapp
3party
upload
desktop
base
TMessagesProj
features
protected
docroot
pix
ddbb
cocos2d
utils
cmd
demos
svn
camel-core
Tests
sysdeps
sources
inc
views
po
cpp
org
travis
pages
old
index
main
lms
kbe
Externals
lang

dataset
ios
etc
llvm
newlib
input
vendors
install
Libraries
dependencies
01
com
repository
interpreter
virt
blog
WebContent
applications
sample
artworks
backup
env
dev
Project
validation-test
cms
linux-2
testing
raw
bundled
python3-alpha
debian
reference
models
Scripts
language
drupal
cluster
sdk
native
builtin
Tools
web-app
extras
typo3
php
hg
go

190

interface
cookbooks
eclipse
webapi
erpnext
aclImdb
chromium
game
v1
ThirdParty
gui
tutorials
mods
conf
nova
question
font-awesome
Android
xml
Code
actor-apps
layouts
Sources
engines
stacks
man
third-party
App
Web
database
var
Core
less
trunk
3rd
scipy
ClassPrj
hadoop-yarn-project
i18n
Packages
toolchain
sw
flask
script
Unity
hw
hadoop-common-project
skontarredhat

Server
Gemfile
Lib
appinventor
setup
wordpress
template
icon-themes
hadoop-hdfs-project
bundle
Experiment
libgo
languages
webroot
image
extern
browser
war
gradle
crashes-duplicates
datasets
Client
git
webkit
mustella
2005
Makefile
bsp
Src
testcases
mediatek
vim
software
sandbox
externals
generated
init
util
puppet
ppapi
hadoop-mapreduce-project
traces
MathJax
out
Classes
feeds
benchmarks
blocks

closure
c
Public
distribution
iOS
cross
classes
ipc
testdata
mc
1
lib-src
2004
skin
intermediates
styles
Demo
sklearn
phpmyadmin
results
cmake
mac
win32
langtools
ReactAndroid
Thirdparty
wiki
hack
de
mobile
2002
Frameworks
support
fuel
extra
sys
cache
services
objects
configs
nodejs
tags
mibs
composer
Jint
design
challenge6
locale

191

shell
npc
WebRoot
easybuild
country
binutils
System
MathJax-master
cpu
settings
graphics
neo
pimcore
Numix
editor
ash
help
google
C
submodules
daemon
SampleVideos
sass-cache
shared
Python
openstack
Plugins
builder
gitattributes
B2G
tiles
lisp
hotspot
rice-middleware
2
taipower
Solutions
presto-main
React
solr
ezpublish
libgcc
m4
libsodium
VocabularyTest
jspm
javascript
bootstrap

installation
win-client
mathjax
explorer
extension
CHANGELOG
6
angular
dashboard
train
emacs
Rakefile
home
elpa
skins
branches
tpl
compiler
alps
requirements
Dependencies
roms
tasks
Common
remoting
local
spring-boot-samples
iphone
service
yii
catalog
published
Carthage
grade
CONTRIBUTING
vagrant
koha-tmpl
archive
grails-app
perl
clients
roles
deploy
jquery
terraform
COPYING
custom
compare

2016
art
crosstool
ARMToolChain
Application
federation
cf
3
resource
wsgi
0
spring-boot-autoconfigure
workspace
tweet
exec
libgloss
gulp
view
work
Website
grunt
gradlew
qa
experiments
appcompat
Test
snippets
docker
ndk
Images
angular-1
Models
slides
items
ckeditor
opendaylight
report
libr
root
Microsoft
scss
model
uefi
BuildDeps
bfd
laravel
JavaScript
libgomp

192

maintenance
hal
mojo
python-build
math
none
riscv
uploads
backends
javadoc
webpack
releases
class
style
boards
basic
runtime
Console
jssource
rawdata
buildroot-avr32-v3
packaging
JabbR
moodle
neutron
touch
frappe
ClickablesVsDrugbank
maps
Kernel
rest-api-spec
generators
gst
editorconfig
cc
json
front-end
sympy
ThinkPHP
youtube
Testing
wagtail
Content
targets
apdos
dotCMS
functions
XcodeClasses

front
proj
fixtures
depend
libc
gems
Chapter
wa-data
enrol
dalvik
Pod
Libs
gpu
utilities
Homeworks
asset
Projects
auth
Framework
agent
pkgs
experimental
spring-boot
openmaxims
matlab
Output
UI
guides
blinky
eZ
4
lapack-netlib
MediaBrowser
filter
libgfortran
Zend
Engine
translations
course
epan
pics
jaxws
i386-squashfs-root
R
openshift
MACOSX
os
integration

presentation
03
private
training
External
CU
windows
portal
shop
types
source4
benchmark
drv
reports
corpus
hadoop-tools
basis
depends
dotnet
pom
patches
02
mk
installer
csv
android-2
teenie
forum
mt6732
panda
chromeos
original
guava
obj
stoqs
Game
head
qtopiacore
cloud
svg
repo
sync
png
wp
uohCorpus
Docs
asterixdb
ports

193

builds
Build
ArduinoAddons
libcloud
name
account
audio
Gruntfile
v2
book
playbooks
ide
gold
sapphire
cordova
distrib
jshintrc
shopizer
extjs
pogs
AllJoyn
labs
intermine
INSTALL
subprojects
make
Vendor
Coding
readme
numpy
pegasus
l10n
schema
actionbarsherlock
linux-4
5
labcodes
New
invenio
gulpfile
uportal-war
Software
OpenRA
magento
integration-cli
romil
temp
new

symfony
guava-tests
flags
WordPress
ffmpeg
Backend
guava-gwt
license
compilers
win
AUTHORS
environments
aio
visualizations
CompareToDrugbank
mt6592
zlib
default
jyhton
semantic
opencascade-6
sky
ansible
ExtLibs
MathJax-2
zerver
phpMyAdmin
en
m2048
spring-boot-tools
39
esb
browser-ext
hotel-dashboard
liquibase-core
UnrealPyEmbed
qt
uClinux-dist
DNN
d8
exe
SVG
tcl
ingress
spring-boot-actuator
cluster-autoscaler
Programming
Top1000

gdx
erts
keepalived-vip
perun-web-gui
chef
archdroid-icon-theme
min-gcc
Sample
ZXingObjCTests
imgs
gccsrc
tinymce
mezzanine
boot
toolchains
Components
smileys
Demos
ParseStarterProject
jhipster-parisjug
rules
prebuilts
rice-framework
memcheck
servers
courses
mlbgameday
logs
games
ProjectSettings
bindings
device
tooling
command
bench
opcodes
cli
cygwin
meteor
gitmodules
Archive
gm
dll
MarsBase
MANIFEST
dts
xen
oceanbase

194

master
known
reveal
font
Arduino
ap
AtomViewer
mingw-w64-i686-gcc
jre
buildtools
run
QtEsrc
Java
manual
AnkiDroid
controllers
election
SMITE
py
v0
migrations
controls
github
20
Doc
Formula
Magento-CE-2
Main
processing
nbproject
grobid-trainer
graf2d
dat
KERNEL
Faenza
ryu
Templates
legacy
samigo
rootfs
ext-4
manifests
2017
widgets
lucene
flamingo2-web
screenshots
howl-proto

gemfire-core
actions
Native
WebCore
libiberty
wire
Primes
Utilities
dependencies64
dubbo-admin
react
white
jaxp
documents
prototype
de4dot
black
TT
qca
host
samurai-examples
nsc
linux-lts-quantal-3
Graphics
jps
vainilla
store
stylesheets
answerkey
manpages
search
product
repos
webapps
articles
my
closure-library
Leanote
source3
configure
JuceLibraryCode
blazetest
gtk
vsprojects
cake
zh
testsrc
me

coeus-help
ruby
ShareX
addon
uitest
subjects
distancemat
log
service-loadbalancer
doxygen
pcf-elastic-runtime-1
intl
packager
activities
US
csharp
Kooboo
MTA10
codec
console
framework-res
facebook
rest
news
grub-core
hot
compat
ow
workflow
Dockerfile
leavesfish
routes
decaf
exercises
Numix-Circle
GUI
provisioning
psi4
AppKit
dev-python
manager
sdks
transport
npmignore
spring-boot-cli
sounds
dojo
UltimateAndroidNormal

195

programs
Symfony
mnist
regression
subdomains

UltimateAndroidGradle
API
Presentation
lua
hbase-server

groups
FreeBSD
test-suite
onvif
elements

196

11.10 Appendix X: Active Reconnaissance Full Data Results

Figure 1: Views-rendering Middleware Application

Figure 2: REST API

197

Figure 3: GraphQL API

198

11.11 Appendix XI: Weekly Update Example

199

Week 14 (10/06/2024)
Introduction
The following was completed during week 13:

Progress Findings

Plan for the Week

Literature review
Section: 2.1

Topic: REST API design principles

Word count: 1,210 words (in-line references included)

Literature review
this section outlines all of the major studies of REST API design principles I could find

major trends and data findings are compared with security in mind

two conjectures were made which could aid the research question

Literature review
Section 2.2

Topic: GraphQL design principles

Word count: ~800 (younger technology, not so much research)

Section 2.3

Topic: REST vs GraphQL

Word count: ~1000 - 1200

11.12 Appendix XII: Bloom’s Taxonomy Worksheet

How to use this reference:

•Read through each criteria

•Compare your references / notes /
understanding to the requirements

• Make a spreadsheet like the
below substituting your
understanding for the criteria text
underneath the headings

• Add more information as the
literature review / project
progresses

• Make note of knowledge gaps /
inconsistencies as they appear

Knowledge Comprehension Application Analysis Synthesis Evaluation

1.10 Knowledge of specifics

The recall of specific information
and isolatable bits of information.

1.11 Knowledge of terminology

Knowledge of the referents for
specific verbal and non-verbal
symbols.

1.12 Knowledge of specific facts

Knowledge of dates, events, persons,
places, sources of info, etc.

1.20 Knowledge of ways and means
of dealing with specifics

Knowledge of the ways of
organising, studying, judging, and
criticising ideas and phenomena.

1.21 Knowledge of conventions

Knowledge of characteristic ways of
treating and presenting ideas and
phenomena.

1.22 Knowledge of trends and
sequences

Knowledge of the processes,
directions, and movements of
phenomenon with respect to time.

1.23 Knowledge of classifications
and categories

Knowledge of the classes, sets,
divisions, and arrangements which
are regarded as fundamental or
useful for a given subject field,
purpose, argument, or problem.

1.24 Knowledge of criteria

Knowledge of the criteria by which
facts, principles, opinions, and
conduct are tested or judged.

1.25 Knowledge of methodology
Knowledge of the methods of
inquiry, techniques, and procedures
employed in a particular subject field
as well as those employed in
investigating particular problems and

2.10 Translation

Translation behaviour:

Occupies a transitional position
between the behaviours classified
under the category of knowledge and
types of behaviour under the
headings interpretation,
extrapolation, analysis, synthesis,
application, evaluation.

Is dependent on the prerequisites of
knowledge.

2.20 Interpretation

To interpret communication the
reader must:

Be able to translate each of the major
parts of it: words, phrases, various
representational devices.

Comprehend the relationships
between its various parts, reorder
and rearrange such in their minds.

Secure a total view of what the
communication contains

Relate it to their own fund of
experiences and ideas.

2.30 Extrapolation

The writer should state what they
believe to be the truth of the matter
and some consequences of it.

Should be exhaustive for criticality
and should go beyond the limits set
by topic of communication and/or
the writer themselves.

Requires ability to:

Translate, as well as interpret the
document, and to extend the trends
or tendencies beyond the given data
and findings of the document.

Determine implications,
consequences, corollaries, effects,
etc. in accordance with the
conditions as literally described in
the original communication.

The whole cognitive domain of the
taxonomy is arranged in a hierarchy:

Each classification within it demands
the skills / abilities which are lower
in the classification order.

To apply something:

Requires comprehension of the
method, theory, principle, or
abstraction applied.

Distinctions between the two:

First way

Comprehension → know an
abstraction well enough to
demonstrate its use.

Application → know which
abstraction to use without prompting
when faced with a question.

Second way

A problem is presented.

Step 1: is perceived as unfamiliar or
familiar.

Step 2: if unfamiliar, use familiar
elements to restructure problem into
familiar context. If familiar, there is
still some restructuring to make
resemblance to familiar model more
complete.

Step 3: classification of problem as
familiar in type.

Step 4: selection of abstraction
(theory, principle, idea, method)
suitable to problem type.

Step 5: use of abstraction to solve
problem.

Step 6: solution to problem.

Emphasises the breakdown of the
material into its constituent parts.

Detects the relationships of the parts
and of the way they are organised.

4.10 Analysis of elements

A communication may be conceived
as composed of a large number of
elements.

Can be explicit: hypotheses,
conclusions.

Can be implicit: unstated
assumptions by the writer, the nature
or function of a statement in the
communication → fact, value, or
intent.

Must be able to tease them out.

4.20 Analysis of relationships

Determine the major relationship
among the elements and the various
parts of the communication.

Explicit level: relationship of
hypotheses to the evidence, and
conclusions and the hypotheses as
well as evidence. Also the
relationship among the different
types of evidence presented

Implicit level: analysis of a
communication into parts which are
essential, or which form the main
thesis as contrasted with those parts
or elements which may expand,
develop, support the thesis.

4.30 Analysis of organisational
principles

An even more complex and difficult
level: the task of analysing the
structure and organisation of a
communication.

This can discern the purpose, point
of view, attitude, or general
conception the author has of the
field.

The analysis of the form, pattern,
structure, organisation of arguments,
evidence, or other elements around
these can help in the
comprehension / evaluation of the
entire communication.

Is often impossible to make an

The putting together of elements and
parts as to form a whole.

Works with elements, parts, etc.,
combining them in such a way as to
constitute a pattern or structure not
clearly there before.

Generally involves a recombination
of parts of previous experience with
new material, restructured into a
new, well-integrated whole.

Requires creative behaviour on the
part of the learner within the limits
set by particular problems, materials,
or some theoretical / methodological
framework.

5.10 Production of a unique
communication

Objectives in which primary
emphasis is upon communication –
getting ideas, feelings, experiences
across to others.

Controlling/limiting factors:

The kinds of effects to be achieved

The nature of the audience in whom
the effects are to be achieved.

The medium through which the
student expresses themselves.

The particular ideas / experiences
chosen to draw upon or
communicate.

“Effects” → the response or change
in response desired in some
audience, with such outcomes as the
following:

The acquisition of information

the understanding of an idea, point
of view, etc.

The acceptance of an idea, point of
view, etc.

Motivation to carry out a purpose
that the author has in mind

Change an attitude or belief

The creation of a mood, or feeling

enjoyment or emotional satisfaction.

Therefore, the nature of the audience
the student addresses is often crucial
in determining what the student does

The making of judgments about the
value of ideas, works, solutions,
methods, materials, etc.

Involves use of criteria, standards for
appraising the extent to which
particulars are accurate, effective,
economical, or satisfying.

Can be quantitative or qualitative.
Involves some combination of all the
behaviours that come before it, and
therefore doesn’t necessarily come
last.

6.10 Judgments in terms of internal
evidence

Internal judgments → concerned
with tests of accuracy of work as
judged by consistency, logical
accuracy, and the absence of internal
flaws.

6:11 Judgments in terms of external
criteria

External standards → required if a
work is to be appraised.

Is derived from a consideration of
the ends to be served and the
appropriateness of specific names for
achieving these ends.

Primarily based on considerations of
efficiency, economy, utility of
specific means for particular ends.

Must use a criteria which is regarded
as appropriate for members of the
class of phenomena being judged
(i.e. in terms of standards of
excellence / effectiveness commonly
used in the field or in comparison of
particular phenomena within the
field).

200

phenomena.

1.30 Knowledge of the universals
and abstractions in a field

Knowledge of the major ideas,
schemas, and patterns by which
phenomena and ideas are organised.

1.31 Knowledge of principles and
generalisations

Knowledge of particular abstractions
which summarise observations and
phenomena.

1.32 Knowledge of theories and
structures

Knowledge of the body of principles
and generalisations together with
their interrelationships which present
a clear, rounded, and systematic
view of a complex phenomenon,
problem, or field.

evaluation until this has been done. → must have a specific audience.

5.20 Production of a plan, or
proposed set of operations

Objectives that fall into this
subcategory generally aim at the
production of a plan of operations.

The production of the plan often
constitutes the act of synthesis.

The product, plan, task must satisfy
the requirements of the task, usually
as specifications or data to be taken
into account.

Student is encouraged to put their
own ideas into the product, apart
from other considerations.

5.30 Derivation of a set of abstract
relationships

Objectives that require the student to
produce, derive a set of abstract
relations.

Two task types:

First type

Those in which the student begins
with concrete data / phenomena and
which they must deduce other
propositions or relations (induction).

May take the form of classifying
certain phenomena by accounting for
the relations existing among a range
of phenomena (e.g. the periodic
table).

May also take the form of explaining
certain phenomena.

Must formulate a hypothesis that
will adequately account for a wide
range of seemingly interrelated
phenomena which fit the facts be
internally consistent (i.e. free from
logical contradictions).

Second type

Those in which the student begins
with some basic propositions or
other symbolic representations and
from which he must deduce other
propositions or relations (deduction).

Little emphasis on developing a
classification scheme.

Begins with abstract symbols,
propositions, etc.,rather than
concrete data.

Must move these symbolic
representations to deductions that
can be reasonably made.

Student would operate within some
theoretical framework, and must
reason in terms of it → rigorous
object criteria which the product
synthesis must meet; no subjective
standards.

References

Bloom, B. S. et al. (1956) Taxonomy of Educational Objectives: The Classification of Educational
Goals. Handbook 1: Cognitive Domain. Longmans. London, WI, USA.

201

